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Abstract

Fluid intelligence—the capacity to solve novel problems without relying on

prior knowledge—is a hallmark of human cognition, yet its mechanisms re-

main elusive. Consider modern artificial intelligence (AI) systems as mod-

els of intelligence. While these systems exhibit remarkable performance

across a wide range of tasks, it is still unclear whether they possess gen-

uine fluid intelligence.

Skepticism arises from two main limitations. First, these systems rely on

massive training datasets: state-of-the-art models require vastly more ex-

amples than human children need to acquire comparable skills. Second,

their brittleness: they often fail when faced with problems that differ even

slightly from the format of their training data. Taken together, these short-

comings suggest that current AI models function primarily as sophisticated

pattern matchers, akin to humans’ crystallized intelligence, rather than

demonstrating the adaptive flexibility characteristic of human fluid intel-

ligence.

This thesis explores the idea that fluid intelligence may arise from a sys-

tem’s capacity to adapt its internal structure while reasoning about novel

problems. I formalize this idea through a computational framework in

which an artificial neural network’s parameters are optimized in real time

during problem-solving. I consider both the extreme case, where adapta-

tion is confined to a single problem instance (inference-time adaptation),

and its extension across streams of inputs, which naturally situates the

model in the online learning paradigm.

This thesis unfolds across three studies. The first demonstrates that a neu-

ral network, initialized with random parameters and therefore lacking any

prior training, can solve abstract reasoning tasks analogous to human in-
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telligence tests. In this extreme case, the network adapts its parameters

using only the information within a single problem instance. This shows

that abstract reasoning can, in some cases, succeed without memorization,

challenging the prevailing view that such capabilities require vast stored

knowledge and situating inference-time adaptation as a candidate mecha-

nism for fluid intelligence.

The second study applies this framework to a stream of inputs—a reversal

learning task—to test its explanatory power against a paradoxical finding

in human learning: extreme violations of expectations can inhibit, rather

than promote, belief updating. I attribute this phenomenon to a compe-

tition inherent in the model’s architecture, which structurally decouples

the parameters encoding sensory inputs from those encoding expectations.

When an observation contradicts expectation, the architecture presents a

choice: adapt the expectation or adapt the input representation. The re-

sults show that the model’s real-time optimization dynamics naturally arbi-

trate this choice: moderate violations drive updates to relational expecta-

tions, whereas extreme violations favor adapting the input representation,

thereby preserving the original expectation.

The final study grounds my computational framework by empirically test-

ing its central prediction in humans. Specifically, I studied how people

adapt to relational reversal. Based on my model, I hypothesized that the

magnitude of the violation would shape the adaptive response, biasing par-

ticipants toward one of two strategies: updating the relational expectation

or reinterpreting the input. To test this, I designed a novel psychophys-

ical experiment. Human behavior was qualitatively consistent with the

model’s dynamics: The effect was modest, yet larger violations significantly

increased the likelihood that participants would reinterpret the input, as

predicted. These findings provide important, albeit modest, empirical sup-

port for the model’s core prediction, while underscoring the challenges of

directly mapping computational mechanisms onto human cognition.

In summary, this thesis proposes real-time adaptation as a key principle for

abstract reasoning and belief dynamics. This perspective has dual implica-
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tions: for cognitive science, it offers a mechanistic model of fluid intelli-

gence, and for artificial intelligence, it supports approaches that overcome

brittleness by augmenting pre-trained models with adaptive capabilities at

inference time. Together, the results suggest that real-time adaptation is a

core aspect of intelligence, both natural and artificial.
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Introduction

When encountering an unfamiliar puzzle, navigating a new city, or reason-

ing through an unexpected social situation, we cannot simply retrieve pre-

stored answers. Instead, our mind appears to actively adapt its approach,

drawing connections, testing hypotheses, and refining its understanding as

the problem unfolds. This ability to solve genuinely novel problems in real-

time without relying solely on previously memorized solutions is termed

fluid intelligence [1–3]. Despite decades of research in cognitive science,

we lack a clear computational account of how this real-time adaptation

works. What mechanisms allow the mind to flexibly reconfigure its pro-

cessing in response to novel challenges?

Modern artificial intelligence (AI) systems, particularly large language mod-

els, can appear to demonstrate similar flexibility, processing novel prompts

and generating sophisticated responses in real-time [4]. However, this ap-

parent similarity masks a fundamental difference in underlying mechanism.

During inference, these systems operate with completely fixed parameters,

applying a vast but static body of pre-learned knowledge to new inputs.

The network itself does not learn, update, or adapt based on the unique

structure of the problem it is actively solving.

This static architecture becomes apparent in the phenomenon of brittle-

ness: AI systems that perform well on training tasks often fail catastrophi-

cally on slight variations of the same problems [5–7]. Crucially, brittleness

reveals something deeper than mere performance limitations – it suggests

that these systems are engaging in sophisticated pattern matching rather

than the kind of flexible, adaptive reasoning that characterizes human fluid

intelligence.

One approach to overcome brittleness is to simply scale up the training
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data to cover all possible variations a model might encounter [8]. How-

ever, this ”brute force” approach faces fundamental limitations. Research

into the scaling laws of large language models (LLMs) suggests this path

is intractable, arguing that the performance gains from increasing data or

model size are so marginal that achieving the reliability needed for sci-

entific inquiry is practically impossible. This problem is compounded by

the fact that as datasets grow, they become overwhelmingly dominated by

spurious correlations, making it even harder for models to learn true un-

derlying principles [9].

Another approach to mitigate brittleness involves prompting models to gen-

erate a ”Chain-of-Thought” (CoT), a series of intermediate steps performed

in real-time that mimic a reasoning process before providing a final an-

swer. This technique is not merely a superficial trick; theoretical work has

shown that it can fundamentally enhance the computational power of these

models. For example, it has been demonstrated that by generating inter-

mediate steps, autoregressive models can solve complex mathematical and

logical problems that are impossible for them to solve directly [10]. More-

over, auto-regressive next-token prediction mechanism, when combined

with CoT-style data, was shown to be powerful enough to approximate any

function computable by a Turing machine, making these models universal

learners [11]. However, this apparent universality may be illusory. A com-

peting line of inquiry suggests that CoT reasoning is itself a brittle form of

pattern matching, rather than genuine, flexible inference, framing CoT as

a ”mirage” that reflects an inductive bias learned from the training data’s

distribution. Consequently, its effectiveness is fundamentally bounded by

the similarity between a test query and the data the model was trained on,

and it fails when pushed beyond these distributional boundaries [12].

If static-parameter inference cannot capture human-like fluid intelligence,

then what computational architecture could? This thesis argues that the

answer lies in abandoning the rigid separation between learning and infer-

ence that characterizes current AI. Instead, I propose that fluid intelligence

emerges from processes where inference and learning occur simultaneously
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– where the very act of confronting a novel problem drives real-time adap-

tation of the cognitive system itself.

My framework draws inspiration from two machine learning paradigms.

Test-time adaptation (TTA) has emerged as a technique to combat distri-

bution shifts by temporarily optimizing a pre-trained model’s parameters

during inference [13–15]. Online learning updates model parameters in-

crementally after processing each data point, making it conceptually pow-

erful for modeling biological knowledge acquisition [16]. My framework

synthesizes these concepts: from TTA, I adopt the principle of optimizing

parameters during problem-solving to handle novel inputs; from online

learning, I incorporate the incremental accumulation of these adaptations,

modeling how problem-solving leads to increasing knowledge. This hybrid

perspective enables me to model both fluid intelligence (momentary adap-

tation) and its gradual conversion into crystallized intelligence (knowledge

accumulation).

The research presented in this thesis unfolds across three studies, each ad-

dressing a fundamental question about modeling intelligence through real-

time adaptation.

Study 1: Establishing Computational Sufficiency

Can inference-time adaptation alone generate abstract reasoning capabil-

ities? My first paper [17] demonstrates that completely naive networks

with randomly initialized weights can solve intelligence test-like problems

by optimizing their parameters using only information within each specific

problem. This challenges the prevailing view that such capabilities require

memorization of vast datasets, showing instead that abstract reasoning can

emerge from adaptive problem-specific learning. I then investigate how

momentary adaptations accumulate into lasting knowledge. Specifically,

I replicated the interleaving advantage from cognitive science: the finding

that alternating between tasks during training improves learning compared

to blocked practice [18, 19].
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Study 2: Demonstrating Explanatory Power

Having established the model’s computational viability, I extended it to pro-

vide a mechanistic explanation for a surprising cognitive puzzle: why ex-

treme violations of an expectation can paradoxically lead to a reduction
in belief updating, contrary to the predictions of standard learning theo-

ries [20–22]. My second paper [23] demonstrates that this phenomenon

emerges naturally from the adaptation dynamics of my network. I exam-

ined the network in a relational reversal task and showed that the system’s

adaptation to violations is determined by a ”race” between two competing

pathways: updating relational expectations or re-interpreting the represen-

tation of the input stimuli. The model demonstrates that the magnitude of

the violation determines the outcome of this race, providing a mechanistic

explanation for resistance to belief change without needing to posit sepa-

rate belief-protecting mechanisms.

Study 3: Testing Empirical Plausibility

Having established my model’s computational power (Paper 1) and its abil-

ity to explain a known cognitive puzzle (Paper 2), the final step was to test

its empirical plausibility. The dual-pathway model developed in my second

paper predicts that the magnitude of an expectation violation systemati-

cally modulates which adaptive pathway an individual chooses in relational

tasks. In my third paper (unpublished), I designed and conducted a behav-

ioral experiment involving a relational task to test this directly. The results

provide modest but statistically significant support for the model’s core hy-

pothesis, showing that a larger violation magnitude increases the likelihood

that participants will adapt their representation of a stimulus rather than

their relational expectation. This result provides preliminary empirical sup-

port for my theory and completes the progression from a novel computa-

tional idea to a behaviorally testable model of cognition.
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Untrained neural networks can 
demonstrate memorization-
independent abstract reasoning
Tomer Barak1 & Yonatan Loewenstein1,2

The nature of abstract reasoning is a matter of debate. Modern artificial neural network (ANN) models, 
like large language models, demonstrate impressive success when tested on abstract reasoning 
problems. However, it has been argued that their success reflects some form of memorization of 
similar problems (data contamination) rather than a general-purpose abstract reasoning capability. 
This concern is supported by evidence of brittleness, and the requirement of extensive training. In our 
study, we explored whether abstract reasoning can be achieved using the toolbox of ANNs, without 
prior training. Specifically, we studied an ANN model in which the weights of a naive network are 
optimized during the solution of the problem, using the problem data itself, rather than any prior 
knowledge. We tested this modeling approach on visual reasoning problems and found that it performs 
relatively well. Crucially, this success does not rely on memorization of similar problems. We further 
suggest an explanation of how it works. Finally, as problem solving is performed by changing the ANN 
weights, we explored the connection between problem solving and the accumulation of knowledge in 
the ANNs.

The topic of this paper is abstract reasoning, sometimes referred to as “fluid intelligence”1. Abstract reasoning is, 
broadly speaking, the ability to solve complex problems by identifying regularities and relations in the problem 
being solved and utilizing them for deducing the solution2,3. It is often studied using intelligence tests that 
comprise word analogy tests (e.g., infer that the relationship between “cow” and “milk” is the same as between 
“chicken” and “egg”) and visual reasoning tests (e.g., Raven Progression Matrices)4,5. As artificial intelligence 
continues to advance, understanding the nature of abstract reasoning in both humans and machines is becoming 
a central question in cognitive science and AI research6.

Abstract reasoning in artificial neural networks (ANNs) appears to be closely tied to training. While deep 
ANNs have shown impressive performance on various intelligence tests7–12, their success relied heavily on 
extensive prior training. Additionally, questions have been raised about the nature of this performance. There 
are indications that ANNs’ success may stem more from “contamination” – exposure to similar questions in 
their training data – rather than from genuine abstract reasoning13,14. This dependency on specific training 
data is further emphasized by findings that minor changes in problem phrasing, which do not affect human 
performance, can render problems unsolvable for ANNs6,15. Thus, while ANNs may exhibit some analogical 
reasoning capabilities, it is disputed that these are based on pattern matching or memorization rather than on 
general intelligence comparable to that of humans.

In this work, we investigated whether ANN tools commonly used in machine learning are capable of 
demonstrating general abstract reasoning. Specifically, we asked if these networks could solve intelligence test 
problems with novel inputs, relying only on the information provided by the specific problem at hand, without 
drawing on prior memorization.

Certain intelligence tests, by their nature, require some level of prior knowledge. For instance, a human 
unfamiliar with English or the relationship between “cow” and “milk” would struggle to relate “chicken” to “egg” 
in an analogy test. Consequently, general intelligence in humans is often assessed using visual reasoning tests, 
utilizing abstract shapes like squares and triangles to minimize the influence of language or cultural knowledge. 
Thus, to evaluate the abstract reasoning of ANN models, we employed visual abstract reasoning tests. These 
visual reasoning tests require identifying relations in a sequence of stimuli, a skill common to many intelligence 
tests1–3,16.

For our network models, we used Relation Networks (RNs)17, as members of this class of models were shown 
to be capable of identifying abstract relations and solving intelligence tests after extensive training9,18. Notably, 

1The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, Israel. 2Department of 
Cognitive Sciences, The Federmann Center for the Study of Rationality, The Alexander Silberman Institute of Life 
Sciences, The Hebrew University, Jerusalem, Israel. email: tomer.barak@mail.huji.ac.il

OPEN

Scientific Reports |        (2024) 14:27249 1| https://doi.org/10.1038/s41598-024-78530-z

www.nature.com/scientificreports
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RNs were shown to successfully solve word-analogy problems without specific training on those problems, but 
with specific training on relevant relationships19,20. In contrast to these previous studies, our focus was on the 
ability of “naive” RNs, who were not exposed to any pre-training, to identify relations in visual reasoning tests 
and use them for solving the tests.

The structure of this paper is as follows: We begin by introducing the visual reasoning tests and the network 
models employed in our study. Next, we present the model’s performance, showcasing its ability to solve non-
trivial problems. We then analyze the mechanisms underlying this performance. Finally, as the model’s problem-
solving involves an optimization process that modifies network parameters in a manner similar to learning, we 
examine the relationship between the model’s problem-solving capabilities and the networks’ accumulation of 
knowledge.

Results
Sequential visual reasoning tests
We constructed a set of artificial problems in which the task is to evaluate the consistency of an image with 
a sequence of its preceding images (Fig. 1). Each problem comprises 5 gray-scale images and 4 optional-
choice images. The images, 224× 224 pixels each, are composed of identical abstract objects and differ along 
several dimensions: the shape of the objects, their size, their color, their number, and their arrangement. By 
construction, one of these features changes predictably over the 5 images. Formally, an image is characterized 
by a low-dimensional vector of features, fj, where f i

j  denotes the value of feature i in image j. An image in pixel 
space, xj, is constructed according to its characterizing features by a generative function xj = G (fj). One of 
the features fp changes predictably along the sequence according to a simple deterministic rule fp

j+1 = U(fp
j ) 

while the other features are either constant over the images or change randomly (values are i.i.d). Considering 
the optional-choice images, the predictable rule is followed in only one of them, and the task is to select this 
image. The other features are either constant in all 9 images (5 of sequence and 4 of optional choices) or change 
randomly (see Methods). We refer to a problem’s predictably changing feature as the problem’s Predictive Feature 
(PF) and to the randomly changing features as distracting features or distractors. Intuitively, the number of 
distractors is a measure of a problem’s difficulty.

The computational task
Each image is characterized by a small number of features, of which one changes predictably. The challenge 
is to simultaneously identify the features and the rule that relates the features of the different images. Relation 
Networks17 do exactly that. Taking a set of stimuli, they learn two functions: an encoder function Zϕ (x) that 
extracts relevant feature(s) from the stimulus, that is, a low-dimensional representation of the stimuli x and a 
relation module Rθ (Zϕ (xi) , Zϕ (xj)) that characterizes the relationship between the features of pairs of stimuli 
xi and xj. In practice, the encoder and the relation modules are functions (typically networks) whose parameters 
(ϕ and θ, respectively) are learned from examples. It should be noted that, to some extent, the complexities of the 
encoder and the relation module are interchangeable. The reason is that a sufficiently-complex relation module 

Fig. 1.  Visual reasoning problems. The problems are characterized by the Predictive Features (PF) that can 
be the color (a, b), number (c), or size (d) of the abstract shapes. The values of the predictive features linearly 
increase along the sequence. The rest of the features (non-predictive) are either constant or random. We refer 
to the random features as Distractors, and their number determines the problem difficulty. Note: the shapes’ 
type and arrangement are always non-predictive, and can either be constant or distracting. The correct choices 
in this figure are all 3.

 

Scientific Reports |        (2024) 14:27249 2| https://doi.org/10.1038/s41598-024-78530-z
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can incorporate the feature extraction. Similarly, a sufficiently complex encoder can operate on the extracted 
features as to simplify the relation between them. For example, any monotonous relation between the features is 
also a linear relation between a (nonlinear) transformation of the features.

Previous studies have shown that with sufficient examples, relational networks can learn to extract the 
relevant features and their relations at a level sufficient for solving intelligence tests9,18,20. The challenge here is to 
perform a similar task without any pre-training. To do so, we defined the following loss function on a sequences 
of 5 images:

	
L (θ, ϕ) =

1

4

4∑

i=1

[Rθ (Zϕ (xi) , Zϕ (xi+1))]� (1)

xi is the ith image in the sequence, the encoder Zϕ : R224×224 → Rn is a function that takes 224× 224 pixel 
images to an n dimensional latent space and the relation module Rθ : R2n → R+ takes two consecutive latent 
variables, each of dimension n, and outputs a positive 1D relation score.

This loss is minimized for a relation function Rθ (Zϕ (xi) , Zϕ (xj)) that outputs a minimal relation score for 
consecutive sequence images (j = i + 1), requiring the identification of the regularity that characterizes these 
consecutive images. We updated the networks’ weights θ and ϕ with 10 optimization steps over the loss L (θ, ϕ) 
using the RMSprop optimizer21 (learning rate of 10−5, the rest of the parameters are set to PyTorch22 default). 
Eventually, after optimization, we evaluated the consistency of each choice image with the sequence based on 
their relation value R when they were placed as the sixth sequence image Rθ (Zϕ (x5) , Zϕ ( · )) and selected the 
choice image with the lowest relation value as the answer.

To clarify, in these settings, the model does not need to learn the features and their relations in the generative 
sense to solve a test successfully. Instead, it is enough to find image representations and rules that are sufficiently 
correlated with a problem’s predictive feature for selecting the most consistent image out of four options.

Vanilla model performance
The success of the model would depend on the specific choice of R and Z (their network structure), as they can 
be inductively biased towards certain types of features and rules. In our vanilla model, the encoder Z was a small 
CNN from input space to a 1D latent neuron, composed of 3 convolutional layers followed by 5 fully-connected 
(FC) layers with a single output neuron (see Methods and Supplementary Information Fig. S1). For the relation 
module, we used a simple function that asserts a linearly changing relation between the latent variables,

	 Rθ (Zϕ (xi) , Zϕ (xj)) = (Zϕ (xi)− Zϕ (xj) + θ)2� (2)

where θ is a trainable constant that does not depend on Z.
We evaluated the performance of the vanilla model on the different tests, in which the predictive feature’s 

values increased linearly, and found that it performed substantially better than chance (0.25) in almost all tasks 
and all levels of difficulty (Fig. 2). Without distractors, its performance on some tasks was close to perfect. We 
also found that performance decreased with the number of distractors, verifying that the number of distractors 
is a good measure of the task’s difficulty. All these results were obtained using networks that were randomly 
initialized before each problem, thus demonstrating that ANNs can perform abstract reasoning that does not 
depend on memorization. Averaged over all conditions, the model’s performance was 0.58± 0.01. From this 
point in the paper, we use this global performance measure for comparisons (see Methods; complete performance 
results are in the Supplementary Information).

Fig. 2.  Vanilla model performance. The performance of naive ANNs on the three Predictive Features (PFs): 
Color (left), Number (center), and Size (right). For each predictive feature, we tested the networks over 16 
test conditions where the predictive feature was linearly changing along the sequence, and the non-predictive 
features were either distractors (marked according to the legend) or constant (not marked). Each test condition 
included 500 randomly generated problems. Error bars are 95% Confidence Intervals (CI). The black line and 
its shade are the average accuracy per difficulty and the corresponding 95% CI. The dashed line denotes the 
chance level of problems with four choice images (0.25).
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Determinants for success
Our model consists of two main components: the encoder Z and the relation module R. The parameters of both 
were changed in the direction of minimizing the loss function on the images of each problem, a process that 
we will refer to as optimization. To study the relative contribution of these components to problem-solving, we 
studied the model’s performance when the parameters of only one of these components, either Z or R, were 
optimized. We found that optimizing the encoder was essential: when the parameters of the encoder Z remained 
unchanged, the model’s performance, averaged over all conditions, was close to the chance level, 0.30± 0.01 (Fig. 
S2). By contrast, using random parameters for the relation module R and not optimizing it had no significant 
effect on performance, resulting in an average performance of 0.58± 0.01 (Fig. S3), which is not significantly 
different from that of the vanilla model. These results motivated us further to study the role of the encoder in 
the task.

The encoder
The encoder is an 8-layer network with 3 convolutional layers followed by 5 Fully-Connected (FC) layers. 
Removing the convolutional layers and connecting the FC layers directly to the inputs impaired the average 
performance of the model, reducing its performance to 0.48± 0.01 (Fig. S4), indicating that the convolutional 
layers are important for performance. In the vanilla model, the parameters of both the convolutional layers 
and the FC layers are optimized in the direction of minimizing the loss function. However, it turns out that the 
optimization of the parameters of the convolutional layers does not contribute to the performance. The average 
performance when the weights of the convolutional layers remained random, 0.57± 0.01, was not significantly 
different than that of the vanilla model (Fig. S5). By contrast, keeping the FC network weights fixed at their 
randomly-initialized values during problem-solving was detrimental to the performance (0.34± 0.01, Fig. S6).

So far, we saw that freezing either the weights of the convolutional layers or the relation module at their 
initial random values does not impair performance. This insensitivity does not change when both are frozen 
(0.58± 0.01, Fig. S7).

We conclude that the convolutional layers effectively operate as frozen feature extractors (features in the more 
general sense – not necessarily the features used for constructing the images) while the parameters of the FC 
layers are optimized to solve the task.

To test how the FC layers contribute to this task, we note that the task could be perfectly solved if the encoder 
could learn to identify the inverse generative function of the problem images G−1(x) and use it to extract the 
underlying predictive feature fp and its rule U(fp). If this is done, we expect the optimization steps to increase 
the correlation of the encoder’s output neuron with the predictive feature (but not with the distracting features). 
We tested this hypothesis in the vanilla model for all the predictive features. Indeed, the absolute Pearson 
correlation of the output neuron with the predictive feature (see Methods) increases with optimization steps, as 
depicted in Fig. 3a (black).

To better understand how such correlations emerge in the FC network, we also computed the absolute 
Pearson correlations of these features with the activities of all other neurons in the FC network (see Methods. 
Comprehensive results in Supplementary Fig. S8). These correlations, averaged over all neurons in a layer, are 
depicted in Fig. 3a. We found that the correlations with the predictive feature increase with the layer depth.

The higher the correlation of the output neuron with the predictive feature, the easier it is for the relation 
module to identify the regularity in the sequence of images. Along the same lines, we also expected the 
optimization process to decrease the correlation of the encoder output neuron with the other irrelevant features. 
This, however, is not the case. Considering the same features in problems in which they are not predictive features 
(either constant or distracting), we found that the correlation of the output neuron with these features also 
increases on average in the optimization process, albeit to a lesser extent (Fig. 3b). Considering the correlations 
of these features with neurons in the hidden layers of the encoder, we found that the correlations with these 
irrelevant features also increased with the layer depth.

Fig. 3.  The encoder’s FC layers feature correlations. The average absolute correlations of encoders’ FC layers 
with (a) the specific predictive feature of the problems they solved (either Color, Number, or Size), and (b) the 
other two non-predictive features (from either Color, Number, or Size). Error shades represent the 95% CI, 
based on the standard error of the means. The calculation of the correlations is detailed in the Methods section.
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At the end of the optimization procedure, the output neuron of the encoder network is correlated with both 
the predictive feature and the irrelevant features (both distractors and constant). The stronger the correlation of 
the output neuron with the predictive feature, relative to its correlation with the distracting features, the better 
we expected the performance to be. To test this, we focused on the six problems in which the relevant feature 
was either color, number, or size, and there was one distracting feature, again: color, number, or size. For each 
of these problems, we computed the absolute Pearson correlations of the output neuron with the predictive 
and distracting features (taken from Fig. S8). We expected that performance in each of these problems would 
increase with the correlation with the relevant feature and decrease with the correlation with the irrelevant 
feature. Indeed, as depicted in Fig. 4, the logit of the performance (log p

1−p  where the accuracies p are taken from 
Fig. 2) is correlated with the ratio of the absolute Pearson correlation of the output neuron with the predictive 
feature and the distracting feature (Wald t-test, p-value = 0.028).

Next, we studied how the correlation with the features increases during optimization. The loss function 
“seeks” some 1D predictable representation of the sequence of inputs. Considering the individual neurons at 
the output layer of the convolutional network part of the encoder, some co-vary with the sequence while others 
do not. Examples of two such neurons are depicted in Fig. 5a (left). As shown in Fig. 5a-b for a single problem, 
the optimization process makes larger changes to the synaptic weights from those neurons that co-vary strongly 
with the sequence order (e.g., blue in Fig. 5a-b) compared with low co-variance neurons (e.g., orange in Fig. 
5a-b). This is the case across all problems (Fig. 5c). Consequently, the neurons in the encoder’s FC layer become 
strongly correlated with the sequence order (Fig. 5d). As a result, the encoder amplifies the representation 
of those features that co-vary with the sequence order (independently of whether they are the predictive or 
irrelevant features).

Together, our results indicate that the ANN’s ability to execute abstract reasoning without prior learning stems 
from two important properties: (1) The random convolutional layers extract features that are correlated with the 
relevant features. (2) The optimization process amplifies the response to those features that monotonically vary 
along the sequence.

The relation module
By construction, the vanilla model’s relation module is simple, implicitly assuming that the features change 
linearly. Therefore, one may naively expect that identifying a non-linear change in the predictive feature will 
be more challenging. However, any monotonically changing rule can be mapped into a linearly changing rule 
with a sufficiently complex encoder. Therefore, we tested our vanilla model in problems in which the change 
in the feature was non-linear (Fig. 6). We found that when the relevant feature was size, the performance for 
an exponential increase or a square root increase of this feature was comparable to that of a linear increase 
(Linear: 0.53± 0.01; Exp: 0.54± 0.01; Sqrt: 0.52± 0.01. Fig. S9-10 right). Similarly, when the relevant feature 
was color, the model achieved comparable performance to the linear case, although with higher variability: 
performance was better for an exponential increase and worse for a square root increase (Linear: 0.70± 0.01
; Exp: 0.75± 0.01; Sqrt: 0.64± 0.01. Fig. S9-10 left). These results suggest that a relation module that assumes 
linear relationships can capture general monotonic relationships, substantially downsizing the hypothesis space 
of possible relationships. It would, however, be more difficult for the model to deal with non-monotonic rules. 
Indeed, when tested in problems where the predictive feature alternated between two of its values, the vanilla 
model performance was at a chance level (0.24± 0.01. Fig. S11).

Fig. 4.  The effect of distractors on accuracy. The figure depicts the relationship between the absolute 
correlation ratio with the relevant Predictive Feature (|ρPF |) and the Distracting feature |ρDis|, and its 
consequential effect on networks’ accuracy in problems of that predictive feature with the corresponding 
distracting feature (pPF,Dis). The predictive features were either Color (Dark Gray), Number (Medium Gray), 
or Size (Light Gray). The distracting features were either Color (Square), Number (Triangle), or Size (Circle). 
Error bars represent the 95% CI. The black dashed line depicts a linear regression analysis.
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Fig. 6.  Non linear rules. The predictive features’ values in these tests increased as a square root (a and d) or 
exponentially (b and c). The rest of the features (non-predictive) are either constant or random. The correct 
choices are all 3.

 

Fig. 5.  Problem-solving mechanism. (a) Two example neurons’ activity from the convolutional layers’ output 
of a network (before optimization) when presented with the example problem of the inset. The blue neuron has 
a large covariance with the problem’s image order, and the orange neuron has a small covariance with the order. 
The neurons’ L2 gradient norms correlate with their respective image order covariances. (b) In this example 
network, the L2 gradient norms of the convolutional layers’ output neurons are strongly correlated with their 
image-order covariances (ρexample = 0.97). The two example neurons presented in (a) are highlighted. (c) 
Distribution of the correlations between L2 gradient norms and images’ sequence-order across all problems. 
(d) The absolute correlation of the encoder’s FC layers with the sequence order during the optimization 
process. Error shades represent 95% CI. Neurons’ covariance and correlation calculations are explained in 
Methods.

 

Scientific Reports |        (2024) 14:27249 6| https://doi.org/10.1038/s41598-024-78530-z

www.nature.com/scientificreports/

11



In the vanilla model, the relation module is simple and general, and the encoder that finds appropriate image 
representations carries most of the “computational load”. However, we expect the complexity of the encoder and 
the complexity of the relation module to be interchangeable, to some extent. Thus, we can move some of the 
computational load from the encoder to the relation module without changing the performance. To test this, 
we simplified the encoder by removing the fully-connected layers, leaving only the convolutional layers, and 
complicated the relation module, by making it a more complex and expressive,

	 Rθ (Zϕ (xi) , Zϕ (xj)) = Hθ (Zconv (xi)⊕ Zconv (xj))� (3)

where the relation module Hθ takes a concatenation of the convolutional layers’ outputs to a single output 
neuron and has a network architecture similar to the vanilla model’s encoder’s FC layers (with twice the input 
dimension). Rather than optimizing both the encoder and the relation module, as in the vanilla model, we 
optimized only the relation module. This version of the model achieved an average accuracy of 0.59± 0.01 (Fig. 
S12) comparable to that of the vanilla model, demonstrating that it is possible to move the computational load 
from the encoder to the relation module without paying in performance.

To conclude this section, we demonstrated two ways for carrying the computational load. Either the encoder 
carries most of the load by extracting the relevant feature in a manner that a simple linear relation module is 
sufficient for capturing the rule. Alternatively, the relation module can carry the computational load. In that case, 
the relation module finds a specific relation between high-dimensional input representations, keeping the input 
representations fixed during problem-solving.

Knowledge crystallization
Our focus so far was the ability of the networks to solve problems without any training, that is, without any 
accumulation of information between problems. Embedded in our model, however, is the ability to accumulate 
knowledge. This is because problem-solving in our model is achieved through changes in synaptic weights. 
This motivated us to study how solving multiple problems affects performance. In humans, the improvement 
of performance due to the accumulation of knowledge by training is referred to as knowledge crystallization23.

We first studied the extent to which the model can improve its performance on one predictive feature by 
practicing on that feature. Notably, in these practice sessions there was no feedback about the correct answer (in 
fact, the networks were exposed only to the sequences of 5 images and not to the possible answers). We found that 
networks that solved 1,000 easy problems with a specific predictive feature (without resetting the weights between 
problems) improved their accuracy on problems with that same predictive feature to 0.74± 0.01 (averaged over 
the three predictive features, Fig. 7), a substantial improvement from the average accuracy without prior training 
(0.58± 0.01). Notably, the improvement was not uniform across features. While performance on Number and 
Size substantially improved (Size: from 0.53± 0.01 to 0.69± 0.01, Number: from 0.50± 0.01 to 0.84± 0.01), 
training on Color did not affect performance in Color problems (0.70± 0.01 in both conditions).

Interestingly, freezing the weights of the relation module resulted in an even better performance (0.80± 0.01
, Fig. S13). On the other hand, the improvement was only modest when the convolutional layers’ weights were 
frozen (0.65± 0.01, Fig. S14).

This improvement in performance is analogous to knowledge crystallization. However, will training on one 
predictive feature improve performance when other predictive features are used? In humans, training on one 
abstract reasoning task does not necessarily generalize to other tasks24. Similarly, we found that while training on 
one predictive feature improved performance in problems with that same predictive feature, it was detrimental 
when the networks were tested on problems with a different predictive feature (Fig. S15).

Will training on several predictive features improve network performance on those trained features? To 
address this question, we focused on the two predictive features that exhibited improvement with training, 
Number and Size. We used block training and tested performance on the most difficult problems of both types. 

Fig. 7.  Knowledge crystallization. The performance of networks that trained on 1,000 easy problems (without 
distracting features) of a certain predictive feature and tested on the different test conditions of that same 
predictive feature. Error bars correspond to 95% CI. The black line and its shade are the average accuracy per 
difficulty and 95% CI corresponding to the mean. The dashed line denotes the chance level given four choice 
images (0.25).
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Considering the first block of training, extensively training the network with one predictive feature improves 
performance on that feature but not on the other feature (Fig. S16). Considering the second block, when this 
network is trained on the other predictive feature, the network quickly improves on that feature, but improvement 
on the first predictive feature quickly diminishes when the network trains on the other feature (Fig. S16a, b). 
Trying to resolve this by interleaving these two predictive-feature problems in short blocks of 5 problems does 
not change the result and the network seems unable to simultaneously improve on two predictive features (Fig. 
S16c, d).

To minimize conflict between the two features, we trained and tested the network in problems in which the 
competing non-predictive feature (Size or Number) was set at the same constant value (see Methods). We found 
that when training was done in two long blocks, the network only improved on the trained feature (Fig. 8a, b). 
By contrast, when training was done by interleaving many short blocks of 5 problems, the network improved in 
both features (Fig. 8c, d).

The fact that the network forgets one feature when training on the other is known in the machine learning 
literature as catastrophic forgetting25, and indeed, interleaving has been shown to address this problem 
effectively26. Similarly, the fact that interleaving is more effective than block training for learning is also well 
known in the cognitive literature as the interleaving effect27,28.

Discussion
We found that naive randomly-initialized ANNs can perform abstract reasoning that does not rely on 
memorization when they are optimized at test time. This result has implications both the cognitive sciences and 
for machine learning.

Traditionally, abstract reasoning in humans has been considered a symbolic computation – a type of digital 
processing distinctly different from the analog nature of computation in ANNs29,30. Recently, however, studies 
have shown that complex computations once attributed solely to symbolic processing can be accomplished by 
extensively trained ANNs31,32. This is especially evident with large language models, which appear capable of 
performing certain forms of abstract reasoning12. Nevertheless, critics of abstract reasoning in ANNs argue that 
this success may be due more to sophisticated memory retrieval than to genuine abstract reasoning13,14. Our 
contribution is that we show that the tools used for training ANNs can also be used for exhibiting what resembles 
symbolic abstract reasoning without any training, hence without relying on memory recall.

A key element in our network’s ability to perform abstract reasoning tasks is the convolutional part of the 
encoder. We found that these random convolutional layers are instrumental in extracting features correlated with 
relevant latent features. Interestingly, optimization of the convolutional layers was not necessary for achieving 
the performance, but did support knowledge accumulation. These results resonate with human-brain studies. 
In humans, early visual cortex regions act as general-purpose feature extractors, sensitive to basic features like 

Fig. 8.  Interleaving effect. Networks were trained on 15,000 problems in which the predictive feature was 
Size and 15,000 problems with predictive feature Number. The training problems were either presented in two 
large consecutive blocks (Size and then Number (a); Number and then Size (b)) or interleaved at a rate of five 
problems per predictive feature (Size and then Number (c); Number and then Size (d)). Errors correspond to 
95% CI (see Methods).
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orientation and direction. It seems unlikely that this low-level feature extraction changes with every problem 
presented to a human participant. They may, however, change with extensive training33.

Highlighting the features that are relevant for the particular sequence of images of a particular problem was 
done in the deep layers of the encoder (fully-connected layers), together with the relation module. In humans, 
imaging studies suggest that higher cortical regions, such as the lateral prefrontal cortex, play an important 
role in abstract reasoning34 and rule learning35. We hypothesize that these higher cortical regions perform the 
analog of the optimization-based computation of highlighting the relevant feature (fully-connected layers of the 
encoder) and identifying its regularity (the relation module).

Notably, the computations performed by the fully-connected layers of the encoder and the relation module 
are somewhat interchangeable. This is because either of those networks can carry the main computational load. 
This suggests an interesting approach for finding relations by implementing a few very simple and general 
(applicable to different problems) relation modules, transferring a significant computational load of finding 
appropriate input representations to the encoder. Furthermore, given the interchangeability of complexity in 
the fully-connected layers of the encoder and the relational module, the separation between the encoder and 
relational module in the brain analog of this computation may not exist.

Our framework naturally generalizes to explaining knowledge acquisition through problem-solving (the 
practice in Fig. 7 was unsupervised, with no feedback). We found that training with many short interleaved 
blocks was substantially more effective than training with two long blocks. This resembles a similar observation 
in the cognitive sciences known as the interleaving effect27,28. In the cognitive sciences, two competing theories 
have been used to explain this effect. In one, the interleaving effect is due to the enhanced problem-identification 
and feature-distinction required when solving two types of problems in close proximity36. The second theory 
explains the interleaving effect by proposing that with interleaved training, the brain is continually engaged 
at retrieving the responses from memory – a process that enhances the consolidation of those memories37,38. 
In contrast to these theories, our model has no explicit problem-identification or memory-consolidation 
mechanisms implemented. Rather, the interleaving effect is a manifestation of the well-known catastrophic 
forgetting phenomenon in machine learning25,26.

We focused in this paper on the abstract reasoning of ANNs optimized by gradient descent. These models 
have shown to achieve performance levels that sometimes rival or even exceed human capabilities, especially in 
areas like language and visual processing, key aspects of human cognition10,39. However, these successes have 
been achieved by scaling up model size and training data, with models trained on datasets vastly larger than what 
human children require to learn comparable skills40,41. Thus, the sustainability of simply increasing network 
size and data volume as a path to further improvements has been doubted42,43. Our findings suggest a potential 
alternative approach, in which ANNs, by optimizing their weights at test time, exhibit computational capacity in 
the absence of massive datasets. This approach offers a promising direction for AI development that prioritizes 
efficiency over scale.

Abstract reasoning consists of several computational facets. In this work, we focused on only one of them: the 
identification of relationships between images in order to infer the sequence completion, also termed inductive 
reasoning. Inductive reasoning is needed for solving many types of intelligence tests16. While modeling this 
facet, our model does not encapsulate other facets of abstract reasoning observed in humans. Specifically, our 
model does not incorporate working memory, limiting the regularities it can identify. It also does not explicitly 
perform the mapping computation required for analogical reasoning20. Additionally, the model cannot solve a 
problem by breaking it into its sub-components44. For example, to solve a Raven Progression Matrix, humans 
use the strategy of identifying common regularities in the rows and the columns. Our model was constructed 
only to find a regularity in a sequence. As with most ANN models, the model cannot interpret its choices. 
Finally, it lacks the ability to generate new images that follow the regularity it identifies. These limitations present 
opportunities for future research and suggest areas for improvement.

In humans, evidence suggests that abstract reasoning operates as a general computational process, analogous 
to a general-purpose computer that can handle any input. For example, an individual’s performance on various 
cognitively demanding tests tends to correlate45. As the tests require different prior knowledge, these correlations 
are taken as support for the hypothesis that a general ability, often termed general intelligence46, underlies these 
diverse cognitive skills. Additionally, training on a specific cognitive task usually does not improve performance 
on unrelated tasks24. This lack of transfer suggests that human abstract reasoning is indeed general, relying 
on general cognitive processes rather than specific learned patterns or memorized solutions. This somewhat 
resembles our model.

In conclusion, our work demonstrates that ANNs can exhibit abstract reasoning abilities without reliance on 
memory recall, opening pathways for further exploration of abstract reasoning mechanisms in both artificial 
systems and humans.

Methods
Code availability
The code for this paper was written using PyTorch22. The code that generates test problems and applies the model 
to solve them is available at https://gith​ub.com/Tomer​-Barak/learn​ing-indepen​dent_abstract_reasoning.

Network architectures
The encoder (Zϕ(x)) consisted of two main components (see Supplementary Fig. S1): three convolutional layers 
(kernel sizes: 2, 2, and 3; strides: all 1; padding: all 1) and five Fully-Connected (FC) layers (number of neurons: 
200, 100, 50, 10, 1). Three ReLU activation functions were applied after each convolutional layer, and two Max-
Pool layers (kernels: 4 and 6, strides: all 1) were applied after the second and third convolutional (+ReLU) layers. 
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Four tanh activation functions were applied after each FC layer, except the last one, which had no activation 
function and remained a linear transformation.

The vanilla model’s relation module consisted of a single parameter as written in equation (2). The more 
complex relation module written in equation (3) was implemented by a five-layer fully-connected network 
(number of neurons: 200, 100, 50, 10, 1). Four tanh activation functions were applied after each of this relation 
module’s layers, except the last one, which had no activation function and remained a linear transformation.

Sequential visual reasoning tests
Each image of the tests was constructed using the following five features: the number of objects in an image 
(possible values: 1 to 9), their shade (6 linearly distributed grayscale values), their shape (circle, triangle, square, 
star, hexagon), their size (6 linearly distributed values for the shapes’ enclosing circle circumference), and 
arrangement (a vector of grid positions that was used to place the shapes in order).

As written in the paper, the choice images’ non-predictive features followed the same rules they abide by in the 
sequence (constant or randomly changing). The predictive feature followed the sequence rule only in the correct 
choice and was randomly chosen from the remaining feature values in the incorrect choices. We restricted the 
possibility of having a repeated choice image in the same problem. If a repeated image was generated by chance, 
we generated another one to replace it.

Average accuracies
In the paper, we report networks’ average accuracies/performance in different experiments. For example, the 
vanilla model’s average accuracy was 0.58± 0.01. These numbers were obtained (except in the knowledge 
crystallization section, discussed below) in the following way. For each predictive feature relevant to the 
experiment, we considered all its test conditions of different difficulties. There were five features, one predictive 
and the other four either constant or distracting, amounting to 24 = 16 test conditions per predictive feature. 
We tested randomly initialized networks in 500 problems in each test condition (each problem with a different 
initialized network) and obtained their success rate in that test condition. To estimate the errors, we calculated 
the standard error of the mean of a sample of Binomial random variables based on the success rate and the 
number of samples (500). To obtain the average accuracy of that predictive feature, we averaged the success rates 
over all test conditions and propagated the errors accordingly. For the total average accuracy, we averaged the 
accuracies of the experiment’s relevant predictive features and propagated the errors.

In the knowledge crystallization section, the average accuracies (e.g., Fig. 7) were obtained by training 50 
networks in each predictive feature on 1000 easy problems (without distractors) of that predictive feature. After 
training, the networks solved 10 test problems in each of the 16 test conditions of a given predictive feature 
(results for networks that trained on one predictive feature and tested on another are shown in Fig. S15). We 
then calculated the average success rate of the networks in each test condition, using the standard error of the 
mean of Binomial random variables as errors. For the total average accuracy, we averaged across the different test 
conditions and all the relevant predictive features of the experiment, propagating the errors.

In the blocks versus interleaving experiments (Fig. 8, S16-S18), we trained 20 networks (in each of the figure 
panels) on 30,000 easy problems of two training predictive features. The training was either in two big blocks 
or interleaved into small five-problem blocks. After every 1875 training problems, we tested the networks on 25 
difficult problems of the two predictive features. In Fig. S16, the easy and difficult problems were such that there 
were no distractors or all of the distractors. In Fig. 8, both the easy and difficult problems of Size had a fixed 
value of Number (5 shapes). Accordingly, the easy and difficult problems of Number had a fixed value of Size 
(the 5th size value).

Correlations
To calculate an encoder neurons’ correlations with a particular feature (color, number, or size; Fig. 3 and S9), we 
generated artificial testing examples corresponding to that feature: 20 images for each of the feature’s six possible 
values (120 examples overall) where the rest of the features’ values were drawn randomly. We applied these 
examples to the network and recorded its neurons’ activity. Based on the neurons’ activity, we calculated each of 
the neurons’ correlation with the feature values. Finally, we averaged the correlations across the layers.

To generate Fig. 3a, we average the correlations of networks that solved the three possible predictive features 
with the predictive features they solved. For Fig. 3b, we calculated the correlations with the other (non-predictive) 
features. In both figures, we averaged over the 16 test conditions of a given predictive feature, 50 problems per 
test condition, each problem solved by a different naive network. Thus, overall, the results are average over 
3× 50× 6 = 900 networks. The complete results of these simulations, before averaging over networks and test 
conditions, are shown in Fig. S8. To calculate the errors of the correlations, we estimated the standard error of 
the mean of the average correlations of the different networks. We propagated these errors when we averaged the 
correlations across test conditions and different predictive features.

To calculate the correlations (or covariance) of neurons with the sequence (Fig. 5b-d), we applied the sequence 
images to the network and recorded its neural activity. Then, we calculated for each neuron the correlation (or 
covariance) between its activity and the sequence order indices of the images. In Fig. 5b-c, we calculated the 
covariance with the sequence of neurons taken from the output of the encoder’s 3rd convolutional layer, while in 
Fig. 5d, we calculated correlations with the sequence of the FC layers’ neurons. The errors in the latter case were 
calculated like those of the feature correlations.

Figure 4
To obtain the values of this plot, we considered test conditions with one distracting feature that was either Color, 
Number, or Size (as those are the features for which we were able to calculate networks’ correlations). In total, 
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there were 6 such test conditions (2 for each predictive feature). For each of the test conditions, the y-axis value 
is the logit function (logit(p) = ln p

1−p) of the success rate of 500 problems of that test condition, each solved by 
a different naive network, obtained from Fig. 2. For the errors of these values, we propagated the success rate 
errors through the logit function. For the x-axis values, we obtained networks’ average absolute correlations 
with the predictive feature of the problems they solved (after solving them) and compared that with the absolute 
correlation of the distracting features. The values and errors were obtained from Fig. S8, and the errors were 
propagated through the ratio. The linear regression analysis was conducted using SciPy’s47 linear regression 
function.

Figure 5c
The histogram in Fig. 5c was obtained by considering the three predictive features (color, number, and size) 
and each of their 16 test conditions, 50 problems in each test condition. For each problem, we calculated the 
correlations between the convolutional layers’ output neurons’ co-variance with the sequence order and the 
L2 gradient norm of those neurons and averaged over the neurons. Finally, we plotted the histogram of those 
averages.

Data availability
No datasets were generated or analyzed during the current study. The visual reasoning tests were generated in 
real-time by an algorithm (included in the Supplementary materials).
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Figure S1: Encoder’s architecture The encoder consisted of two main parts: three convolutional layers (kernel
sizes (k): 2, 2, and 3) and five Fully-Connected (FC) layers. Three ReLU activation functions were applied after
each convolutional layer, and two Max-Pool layers were applied after the second and third convolutional layers. Four
Tanh activation functions were applied after each FC layer, except the last one, which had no activation function
and remained a linear transformation. This figure was generated by NN-SVG [1].
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Performance figures

Determinant of success

PF: Color, Rule: Linear PF: Number, Rule: Linear PF: Size, Rule: Linear

Figure S2: Frozen encoder The performance of naive ANNs with frozen encoder weights on the three Predictive
Features (PFs): Color (left), Number (center), and Size (right). For each PF, we tested the networks over 16 test
conditions where the PF was changing linearly along the sequence, and features that were not predictive were either
distractors (marked according to the legend) or constant (not marked). Each test condition included 500 randomly
generated problems. Error bars are 95% confidence intervals. The black line and its shade are the average accuracy
per difficulty and the standard deviation. The dashed line denotes the chance level given 4 choice images (0.25).

PF: Color, Rule: Linear PF: Number, Rule: Linear PF: Size, Rule: Linear

Figure S3: Frozen relational module The performance of naive ANNs with a frozen relational module on the
three Predictive Features (PFs): Color (left), Number (center), and Size (right). For each PF, we tested the networks
over 16 test conditions where the PF was changing linearly along the sequence, and features that were not predictive
were either distractors (marked according to the legend) or constant (not marked). Each test condition included 500
randomly generated problems. Error bars are 95% confidence intervals. The black line and its shade are the average
accuracy per difficulty and the standard deviation. The dashed line denotes the chance level given 4 choice images
(0.25).
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Encoder

PF: Color, Rule: Linear PF: Number, Rule: Linear PF: Size, Rule: Linear

Figure S4: Without convolutional layers The performance of naive ANNs without convolutional layers, where
the FC layers are directly connected to the images, on the three Predictive Features (PFs): Color (left), Number
(center), and Size (right). For each PF, we tested the networks over 16 test conditions where the PF was changing
linearly along the sequence, and features that were not predictive were either distractors (marked according to the
legend) or constant (not marked). Each test condition included 500 randomly generated problems. Error bars are
95% confidence intervals. The black line and its shade are the average accuracy per difficulty and the standard
deviation. The dashed line denotes the chance level given 4 choice images (0.25).

PF: Color, Rule: Linear PF: Number, Rule: Linear PF: Size, Rule: Linear

Figure S5: Frozen convolutional layers The performance of naive ANNs with frozen convolutional layers on the
three Predictive Features (PFs): Color (left), Number (center), and Size (right). For each PF, we tested the networks
over 16 test conditions where the PF was changing linearly along the sequence, and features that were not predictive
were either distractors (marked according to the legend) or constant (not marked). Each test condition included 500
randomly generated problems. Error bars are 95% confidence intervals. The black line and its shade are the average
accuracy per difficulty and the standard deviation. The dashed line denotes the chance level given 4 choice images
(0.25).
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PF: Color, Rule: Linear PF: Number, Rule: Linear PF: Size, Rule: Linear

Figure S6: Frozen FC layers The performance of naive ANNs with frozen FC layers on the three Predictive
Features (PFs): Color (left), Number (center), and Size (right). For each PF, we tested the networks over 16 test
conditions where the PF was changing linearly along the sequence, and features that were not predictive were either
distractors (marked according to the legend) or constant (not marked). Each test condition included 500 randomly
generated problems. Error bars are 95% confidence intervals. The black line and its shade are the average accuracy
per difficulty and the standard deviation. The dashed line denotes the chance level given 4 choice images (0.25).

PF: Color, Rule: Linear PF: Number, Rule: Linear PF: Size, Rule: Linear

Figure S7: Frozen convolutional and FC layers The performance of naive ANNs with frozen convolutional and
FC layers on the three Predictive Features (PFs): Color (left), Number (center), and Size (right). For each PF, we
tested the networks over 16 test conditions where the PF was changing linearly along the sequence, and features that
were not predictive were either distractors (marked according to the legend) or constant (not marked). Each test
condition included 500 randomly generated problems. Error bars are 95% confidence intervals. The black line and
its shade are the average accuracy per difficulty and the standard deviation. The dashed line denotes the chance
level given 4 choice images (0.25).
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Figure S8: Feature correlations For each predictive feature (rows) and test conditions (number of distractors), we
measured the average correlation of the output neurons of 50 networks after optimization with the color, number,
and size features (columns). Error bars correspond to a 95% confidence interval.
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Relation module

PF: Color, Rule: Exp PF: Size, Rule: Exp

Figure S9: Exponential relations The performance of naive ANNs on the three Predictive Features (PFs): Color
(left), Number (center), and Size (right). For each PF, we tested the networks over 16 test conditions where the PF
was changing exponentially along the sequence, and features that were not predictive were either distractors (marked
according to the legend) or constant (not marked). Each test condition included 500 randomly generated problems.
Error bars are 95% confidence intervals. The black line and its shade are the average accuracy per difficulty and the
standard deviation. The dashed line denotes the chance level given 4 choice images (0.25).

PF: Color, Rule: Sqrt PF: Size, Rule: Sqrt

Figure S10: Square root relations The performance of naive ANNs on the three Predictive Features (PFs): Color
(left), Number (center), and Size (right). For each PF, we tested the networks over 16 test conditions where the
PF was changing as a square root along the sequence, and features that were not predictive were either distractors
(marked according to the legend) or constant (not marked). Each test condition included 500 randomly generated
problems. Error bars are 95% confidence intervals. The black line and its shade are the average accuracy per difficulty
and the standard deviation. The dashed line denotes the chance level given 4 choice images (0.25).
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PF: Color, Rule: Alt PF: Number, Rule: Alt PF: Size, Rule: Alt

Figure S11: Alternating relations The performance of naive ANNs on the three Predictive Features (PFs): Color
(left), Number (center), and Size (right). For each PF, we tested the networks over 16 test conditions where the PF
was alternating between two values along the sequence, and features that were not predictive were either distractors
(marked according to the legend) or constant (not marked). Each test condition included 500 randomly generated
problems. Error bars are 95% confidence intervals. The black line and its shade are the average accuracy per difficulty
and the standard deviation. The dashed line denotes the chance level given 4 choice images (0.25).

PF: Color, Rule: Linear PF: Number, Rule: Linear PF: Size, Rule: Linear

Figure S12: Complex Relation Module The performance of naive ANNs with a complex relational module (Eq.
(3)) on the three Predictive Features (PFs): Color (left), Number (center), and Size (right). For each PF, we tested
the networks over 16 test conditions where the PF was changing linearly along the sequence, and features that were
not predictive were either distractors (marked according to the legend) or constant (not marked). Each test condition
included 500 randomly generated problems. Error bars are 95% confidence intervals. The black line and its shade
are the average accuracy per difficulty and the standard deviation. The dashed line denotes the chance level given 4
choice images (0.25).
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Knowledge crystallization

PF: Color PF: Number PF: Size

Figure S13: Extensive training with frozen relation module The performance of extensively trained networks
with frozen relational module on the three Predictive Features (PFs): Color (left), Number (center), and Size (right).
For each PF, we tested 50 networks over 16 test conditions, 10 problems in each test condition, where the PF was
changing linearly along the sequence, and features that were not predictive were either distractors (marked according
to the legend) or constant (not marked). Error bars are 95% confidence intervals. The black line and its shade are
the average accuracy per difficulty and the standard deviation. The dashed line denotes the chance level given 4
choice images (0.25).

PF: Color PF: Number PF: Size

Figure S14: Extensive training with frozen convolutional layers The performance of extensively trained
networks with frozen convolutional layers on the three Predictive Features (PFs): Color (left), Number (center),
and Size (right). For each PF, we tested 50 networks over 16 test conditions, 10 problems in each test condition,
where the PF was changing linearly along the sequence, and features that were not predictive were either distractors
(marked according to the legend) or constant (not marked). Error bars are 95% confidence intervals. The black line
and its shade are the average accuracy per difficulty and the standard deviation. The dashed line denotes the chance
level given 4 choice images (0.25).
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Figure S15: Full extensive training results with conflicting features. The performance of extensively trained
networks that trained easy tests of either of the three Predictive Features: Color (top row), Number (middle row),
Size (bottom row) and were tested on these features: Color (left), Number (center), and Size (right). For each test
PF, we tested 20 networks over 16 test conditions, 25 problems in each test condition, where the PF was changing
linearly along the sequence, and features that were not predictive were either distractors (marked according to the
legend) or constant (not marked). Error bars are 95% confidence intervals. The black line and its shade are the
average accuracy per difficulty and the standard deviation. The dashed line denotes the chance level given 4 choice
images (0.25).
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a b
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Figure S16: Solving two inconsistent problem types. Networks were trained on 15,000 problems in which the
predictive feature was Size and 15,000 problems with predictive feature Number. Training problems of a certain PF
were easy in the sense that all the non-PFs were constant along the sequences. However, these features’ constant
values, including those of the other PF, changed between the problems. Furthermore, the testing problems of a certain
PF included the other PF as distractors. The training problems were either presented in two large consecutive blocks
(Size and then Number (a); Number and then Size (b)) or interleaved at a rate of five problems per predictive feature
(Size and then Number (c); Number and then Size (d)). Errors correspond to 95% CI (see Methods).
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Two pathways to resolve relational 
inconsistencies
Tomer Barak 1 & Yonatan Loewenstein 1,2

When individuals encounter observations that violate their expectations, when will they adjust their 
expectations and when will they maintain them despite these observations? For example, when 
individuals expect objects of type A to be smaller than objects B, but observe the opposite, when will 
they adjust their expectation about the relationship between the two objects (to A being larger than 
B)? Naively, one would predict that the larger the violation, the greater the adaptation. However, 
experiments reveal that when violations are extreme, individuals are more likely to hold on to their 
prior expectations rather than adjust them. To address this puzzle, we tested the adaptation of 
artificial neural networks (ANNs) capable of relational learning and found a similar phenomenon: 
Standard learning dynamics dictates that small violations would lead to adjustments of expected 
relations while larger ones would be resolved using a different mechanism—a change in object 
representation that bypasses the need for adaptation of the relational expectations. These results 
suggest that the experimentally-observed stability of prior expectations when facing large expectation 
violations is a natural consequence of learning dynamics and does not require any additional 
mechanisms. We conclude by discussing the effect of intermediate adaptation steps on this stability.

Imagine strolling through an art museum, expecting awe-inspiring masterpieces. Suddenly, disrupting your 
expectations, you encounter, displayed in the vitrine, ... a banana. This can be framed as a violation of a relational 
expectation: On the one hand, the artistic value of museum displays is expected to be greater than the artistic 
value of mundane objects. On the other hand, a banana seems to have a limited artistic value. There are two ways 
to resolve this inconsistency: recalibrate the expected relationship between the museum displays and mundane 
objects, or maintain this expectation and find an alternative explanation for the observation (e.g., find a deeper 
appreciation for the artistic value of bananas).

Previous studies suggested the existence of distinct cognitive modules associated with the generation of 
representations and the encoding of relations both in humans and other species1–7. In the banana example, 
the representational module, which extracts task-relevant features from inputs, determines the artistic value 
of objects, whether a Rodin sculpture or a banana. Adaptation of this module would correspond to finding 
merit in bananas. The relational module encodes the expected relationship between representations, or between 
these representations and a predefined anchor. For instance, the relational module in the banana scenario 
encodes the expectation that objects displayed in an art museum surpass a certain threshold of artistic value, 
and its adaptation would result in decreasing this threshold. While in the banana example both modules can 
simultaneously adapt—slightly changing the representation of bananas and the expectation from museums—
this is not the case in all violations of relational expectations.

Consider a scientist who has consistently observed that particles of type B are larger than particles of type A. 
With new experimental techniques, experiments suggest the opposite: particle A is actually larger than particle 
B. This unexpected finding forces the scientist to choose between two alternative adaptation pathways: maintain 
the view that B is larger than A by, for example, questioning the validity of the experimental results (adapt the 
representational module), or alternatively, update their view and conclude that A is, indeed, larger than B (adapt 
the relational module). This scenario sets two distinct possible adaptation pathways.

Our study was motivated by recent experiments that found that the choice between resolution pathways 
exhibits an inverted U-shaped dependence on the size of the violation8–11: When the violation is minute, its effect 
on the expectations is small. Larger violations have a larger effect on the expectations. Even larger violations 
(extreme violations), however, fail to alter expectations. Somewhat similar findings were also observed in non-
human animals in the framework of associative learning. When moderate, stronger unconditional stimuli elicit 
stronger conditional response. However, when extreme, the magnitude of the resultant conditional response 
decreases with the magnitude of unconditional stimulus12–14. These results are surprising because naively, 
operant learning, predictive coding and Bayesian models assert that the larger the prediction error, the greater 
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the adaptation15–19. Therefore, gating mechanisms that modulate the magnitude of the adaptation10, for example, 
“immunization” mechanisms that prevent adaptation in extreme violation settings have been proposed20–23.

In this paper we show that the inverted U-shaped dependence of adaptation on the size of the violation 
naturally emerges in artificial neural networks (ANNs) that are trained to identify relations using standard 
(gradient) learning. We first present the results from a behavioral perspective using deep networks. Then, we 
explain these results by mathematically analyzing a simplified model.

Results
The order discrimination task
We study adaptation using the order discrimination task: Agents are presented with image pairs and are 
instructed to determine, for each pair, if it was presented in the correct or reverse order. Each image depicts 
shapes arranged on a 3 × 3 grid and is characterized by five features: the grayscale color of the shapes, their 
number, size, grid arrangement, and shape type (Fig. 1). The first three features—color, number, and size—are 
described by a scalar number, establishing natural possible order relations between images. The “correct” order 
in the task depends on the identity of the relevant feature (color, size, or number), termed the predictive feature, 
and whether this feature increases or decreases from left to right.

To teach the underlying rule, the agents are presented with a series of “correctly” ordered image pairs (Fig. 
1a), such that the predictive feature changes according to the underlying rule, while the remaining features, 
irrelevant to deciding the correct order, are randomly chosen for each pair but remain constant within the 
pair (as in the test images). In the main text of this paper we present the results when the predictive feature 
was the size. We demonstrate the generality of our findings by presenting similar results in the Supplementary 
Information, when the predictive features were color or number (Figures S1–S4).

A key parameter in this task is the difference in the predictive feature values between the two images, a 
quantity that we denote by α. A positive α implies that the predictive feature increases from left to right, whereas 
a negative α implies that it decreases. The absolute value of α determines the magnitude of change: α = 0 
implies that the feature does not change between the two images, whereas α = ±1 signifies maximal difference. 
In the real world, α would correspond to the (scaled) objective difference between objects. In the example of 
the scientist measuring particle sizes, α is the (scaled) objective difference between the sizes of particle A and 
particle B.

The ANN
As agents, we used ANNs that were designed to emulate relational learning24–27. Specifically, our networks were 
comprised of two modules. The first is a representational module, an encoder which we denote by Z. Its goal is to 
extract a relevant feature from inputs. For each of the two images of a pair, x and x′ (left image and right image, 
respectively), it maps the n × n image to one-dimensional variables Zw(x) and Zw(x′), where w are trainable 
parameters. We implemented this mapping using a multilayered convolutional network. A similar architecture 
was shown in a previous study to be able to extract the relevant features in an intelligence test28. The difference 
between the representations of the two images is given by ∆Z = Zw(x′) − Zw(x).

The relational module, which we denote as Rθ , characterizes the expected relation between the representations 
of the two images of the pair. In general, a relational module could be any function Rθ (Zw (x′) , Zw (x)). 
We used a constant, single-parameter function that encodes the expected difference between representations, 
Rθ = θ.

Formally, we define a loss function for a pair of images as:

	 L (w, θ) =
((

Zw
(
x′) − Zw (x)

)
− Rθ

)2 = (∆Z − θ)2 .� (1)

If ∆Z = θ, that is, if the difference between the two representations ∆Z  is equal to the expected relationship θ 
then the loss function is minimized. Formulated this way, however, if Zw(x) = 0 for all x then ∆Z = 0 for all 
x and θ = 0 will trivially minimize the loss. To avoid the model collapsing into this trivial solution, we defined 
a regularized loss function, in which ∆Z  and θ are driven to reside on a ring,

Fig. 1.  Order discrimination task. (a) Training set that demonstrates an underlying rule between images. The 
shapes in the right images are larger than those in the left images. The difference is characterized by α. In these 
examples, α = 0.5, corresponding to half of the maximal size difference possible in our simulations. (b) The 
task is to determine whether two images are in the correct order according to the rule that characterizes the 
training set.
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	 L̃ (w, θ) = L + λ
(
∆Z2 + θ2 − r2)2

.� (2)

λ > 0 and r are hyper-parameters. With this additional regularization term, solutions such that L̃ (w, θ) = 0, 
if attainable, would reside in the points where the line ∆Z = θ intersects with the ring ∆Z2 = θ2 = r2/2, 
∆Z = θ = r/

√
2 and ∆Z = θ = −r/

√
2.

The model parameters w and θ are trainable and we used Stochastic Gradient Descent (SGD) on L̃ (w, θ) 
to learn them (see Methods). To evaluate the performance of the ANN, we measured its ability to determine the 
order of novel test images. Specifically, we presented the ANN with two images, measured the values of the loss 
function associated with the two possible orders of these images (left-right or right-left), and chose the order that 
minimized the loss function. Figure 2a, depicts the average performance of 100 ANNs as a function of the size of 
the training set when α = 0.5, showing that the networks successfully learned to solve the task after less than 40 
image pairs. The high performance holds for other values of α. We tested α values ranging from 0.1 to 1, training 
them on 160 image pairs, and found that throughout this range, the ANNs performance exceeded 90% accuracy 
(Fig. 2b). Larger differences in the predicted feature between the two images (α) were associated with higher 
performance, signifying that the magnitude of α is a measure of the difficulty of the task. This robust learning 
performance, in a model with distinct representational and relational modules, reflects the ability shown in 
humans and non-human animals to learn relationships regardless of absolute attributes. Moreover, the higher 
performance with larger α values align with observations from those studies, where clear distinctions between 
stimuli support more robust relational behavior3,4,29,30.

Fig. 2.  Task performance and solutions. (a) The average test accuracy of 100 networks trained on a task 
where the predictive feature, size, changed by α = 0.5. (b) The final test accuracies for various values of α, 
averaged over 100 networks per α. Error shades and bars correspond to 95% CI. (c, d) The model can solve 
the task using two different internal strategies. In one strategy, (c) a representative network learned to measure 
“largeness,” where it perceived the shapes getting larger (positive ∆Z) and expected them to get larger (positive 
θ). In an equally effective strategy, (d) another network learned to measure “smallness,” where it perceived the 
shapes becoming less small (negative ∆Z) and expected “smallness” to decrease (negative θ). Both solutions 
are equally valid for solving the task.
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It is instructive to separately consider how each of the two modules adapt in the process of learning. This is 
depicted in Fig. 2c for one representative network, where we plot the values of ∆Z  and θ as a function of example 
pairs. According to Eq. (2), the regularized loss is minimized when ∆Z2 = θ2 = r2/2. In this simulation, 
r2 = 0.1. While the values of ∆Z  and θ vary between example pairs, they approach ∆Z ≈ θ ≈ r/

√
2 ≈ 0.2. 

Figure 2d depicts another example network. In this simulation, which differed only in the initial parameters, 
∆Z  and θ converged to a negative solution, where ∆Z ≈ θ ≈ −r/

√
2 ≈ −0.2. From a point of view of 

task performance, the positive and negative solutions (±r/
√

2) are identical. In the positive solution, the 
representational module learns to extract the size of the shapes, that is, how large they are, and the relational 
module learns that this size increases between the two images (from left to right). In the negative solution, 
the representational module learns to extract the “smallness” of the shapes (the negative of the size) and the 
relational module learns that the “smallness” decreases between the two images.

Dual adaptation pathways in ANNs
To study the violation of relational expectations in the ANNs, we trained them with sequences of image pairs, 
characterized by a specific predictive feature that changes by α1 > 0 between the two images of the pair. After 
learning, we changed the training set’s relation rule to −α2 where α2 > 0. That is, the shapes’ sizes decreased 
rather than increased from left to right, violating the relational expectation. We continued training the ANNs 
with the new rule and measured the performance of the ANNs as a function of examples.

The rule sizes before and after reversal, α1 and α2, determine the magnitude of the violation. Specifically, 
we expect that large α1 and α2 would correspond to a large violation while small α1 and α2 correspond to a 
small violation. To illustrate the core phenomenon, we begin our analysis by considering the specific case of a 
symmetric rule reversal: α1 = α2. To simplify notations, we write α1 = α and α2 = α, therefore analyzing the 
case of rule reversal, α → −α. Later, we study how α1 and α2 independently affect the adaptation pathway.

Crucially, there are two ways of resolving a rule reversal violation. Recall that in Fig. 2 we saw two different 
solutions that networks trained on the task identified. In one, both ∆Z  and θ were positive, while in the other, 
both were negative. There, we discussed the fact that the solution that minimizes the loss function is not unique: 
∆Z = θ = r/

√
2 and ∆Z = θ = −r/

√
2 both minimize the loss function. These two solutions are depicted 

schematically in Fig. 3a. Following rule reversal, ∆Z  necessarily changes its sign, violating the expectation set 
by θ. As illustrated in Fig. 3b, one possibility for resolving the expectation violation is by changing the weights 
of the representational module, Zw, so that ∆Z  would return to its pre-reversal sign keeping the relational 
module unchanged. The other possibility is that the representational module retains its post-reversal sign of 

Fig. 3.  Illustration of the two adaptation pathways. (a) The two equivalent solutions for the relational task. 
One solution is to encode the size of the objects and expect that the size increases (positive ∆Z  and θ, marked 
by a star). In the other solution, the smallness decreases (negative ∆Z  and θ). The diagonal line all solutions 
in which ∆Z = θ. (b) Adaptation pathways following rule reversal. Without loss of generality, we consider an 
agent that has learned the positive solution. After learning the initial rule, the rule is reversed, flipping the sign 
of ∆Z , making it inconsistent with positive θ (marked by a star). There are two adaptation pathways: relational 
adaptation—maintaining the sign of ∆Z  but reversing the sign of the expectation θ; or representational 
adaptation - changing the sign of ∆Z  to encode the smallness of objects, while maintaining the expectation 
that the relevant feature increases (θ > 0). The dashed diagonal line represent expectations that are opposite to 
the observations (θ = −∆Z).
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∆Z  while the relational module θ changes its sign. Both can lead to exactly the same level of performance. We 
hypothesized that magnitude of α would determine which of the two adaptation pathways would be taken by 
the ANNs.

Going back to the ANNs, we first considered two violation magnitudes: a larger violation (α = 0.8, Fig. 
4a left) and a smaller violation (α = 0.2, Fig. 4a right). We measured the ANNs performance as a function of 
examples before and after reversing the rule (Fig. 4b). In both the larger and the smaller violation conditions, 
performance levels just before the sign reversal (image pair 160) were almost perfect. The first image pairs 
immediately following the reversal were almost always incorrectly ordered by the ANNs (performance level 
close to 0). With examples, however, the networks adapted to the new rule, achieving almost perfect performance 
after additional 160 image pairs. Notably, learning was slower for the more difficult task associated with the 
smaller value of α. Also, adaptation to the reversal was slower than initial learning, a phenomenon that has been 
previously reported in human learning31.

To dissect the roles of the two modules in this reversal adaptation, Fig. 4c depicts the values of ∆Z  (red) and 
θ (blue) in representative networks adapting to the large and small violations. Before reversal, both networks 
converged to comparable values of ∆Z  and θ. Immediately after the rule reversal, ∆Z  flipped. This is because 
the image order was reversed – the sizes of the shapes decreased, rather than increased between the two images 
– and the representation module reflected it. The value of θ, however, remained unchanged. This is because the 
network “expected” the sizes of the shapes to increase rather than decrease. With training, the system resolves 
this violation.

Fig. 4.  Dual adaptation pathways following rule reversal. Demonstration of the two adaptation pathways, 
depending on the violation magnitude, when the rule changes from α to −α. (a) Example image pairs before 
and after the rule reversal for a large violation (α = 0.8, left) and a small violation (α = 0.2, right). (b) 
Performance across 100 networks as a function of examples (shaded regions: 95% CI). (c) Representative 
demonstration of the evolution of ∆Z  (red) and θ (blue) for each violation magnitude. Initially, both networks 
converge to the positive solution (θ, ∆Z > 0). After reversal, ∆Z  flips immediately due to the change in the 
image order. Optimization drives ∆Z  and θ towards each other, approaching ∆Z = 0 and θ = 0. For large 
violations (left), the representation module “wins” and adaptation restores ∆Z  while keeping θ unchanged. For 
small violations (right), adaptation eventually occurs via the relational module, flipping the sign of θ to match 
the negative ∆Z .
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In our simulations, we found that when the violation was large (Fig. 4c left), the representational module Z 
adapted so that ∆Z  returned to its pre-reversal values. By contrast, when the violation was small (Fig. 4c right), 
∆Z  remained negative and the violation was resolved by a change in the sign of the relational module θ.

Are these results representative? We simulated reversal adaptation for different values of α, each time 
simulating 100 randomly-initialized networks, and measuring the fraction of times in which the adaptation 
involved a change in the sign of θ, which indicates that the relational module dominates the adaptation. In line 
with the examples of Fig. 4c, the smaller α, the larger was the fraction of networks in which the relational module 
flipped its sign in response to the rule reversal (Fig. 5a). The transition between the two adaptation pathways, an 
inflection point marked by ᾱ, was at 0.34 ± 0.02. These results demonstrate that large violations (α > ᾱ) can 
inhibit adjustments to relational expectations, leading to adaptation in object representations instead.

The results of this section are reminiscent of the surprising part of the experimentally-observed inverted 
U-shaped dependence of relational adaptation to the size of the violation discussed in the Introduction. When 
the violation is modest (α is small), the relational expectation adapts: θ changes its sign when the order of images 
is reversed. By contrast, it remains unchanged when the violation is large. Instead, the violation is resolved by 
the network changing its representation. This behavior does not require any explicit immunization mechanism. 
Rather, it naturally emerges from the dynamics of learning.

General rule reversals
In the analysis above, we considered the special case of symmetric rule reversal, in which α1 = α2. Now, we 
study the specific contribution of these two parameters to the choice of an adaptation pathway. To that end, we 
studied the adaptation of ANNs to a different pairs of α1 and α2, as depicted in Fig. 5b. For each pair (α1, α2) 
we measured the fraction of networks in which adaptation was associated with a change in the sign of θ (color 
coded). To better visualize the transition point (which was denoted by ᾱ in the case of α1 = α2), the symbol 
(square vs. triangle) denotes whether this fraction was smaller or larger than 50%. These simulations show 
that the adaptation pathway depends both on α1 and α2. The larger α1 and the larger α2, the more likely it is 
that the representational module will change its sign. However, a large α1 can compensate for by a small α2 
and vice versa. The boundary between the two adaptation pathways resembles a hyperbolic curve. This is not 
a coincidence. Below we prove, in a simplified model that in the limit of weak regularization, the boundary is, 
indeed, a hyperbolic function in the α1 × α2 plane.

Next we study the implications regarding our ability to use shaping to facilitate or inhibit adaptation of 
relational expectations.

Shaping adaptation through an intermediate rule
Understanding how individuals adapt to violations of their expectations is important for clinical psychology, 
as expectation persistence and change are central to mental health interventions. Clinical research has shown 
that maladaptive expectations contribute to disorders such as anxiety and depression, where individuals often 
maintain dysfunctional expectations even in the face of disconfirming evidence23. Effective psychological 
treatments leverage expectation violations to induce cognitive and behavioral change. Yet, while moderate 
expectation violations are most effective in altering beliefs, extreme violations risk reinforcing rigid mental 
models, preventing adaptation10,23. In this section we show that adding an intermediate rule in the reversal task 
can alter the adaptation pathway, thereby steering the adaptation process toward a preferred adaptation strategy.

We compared adaptation in reversal task in which the rule is reversed in one step, as before (α → −α) to 
adaptation when our agents also adapt to an intermediate step (α → β → −α). We hypothesized that the value 
of ᾱ would inversely depend on the magnitude of the intermediate step: larger intermediate rules would lower ᾱ, 

Fig. 5.  Adaptation pathway dependence on violation magnitude. (a) Fraction of networks (n = 100) adapting 
via relational module (θ sign change) for rule reversal α → −α, fitted with logistic function (green) to 
estimate inflection point ᾱ. Arrows mark the α values from Fig. 4. The logistic function fit has two parameters, 
the inflection point, ᾱ ∼ 0.34, and the slope parameter, ∼ 14.10 (see Methods). Error bars: 95% CI. (b) 
Adaptation pathways for general rule changes α1 → −α2. Color indicates fraction (out of n = 50) adapting 
via relational module (θ). Squares: representational module (Z) dominant (ratio < 50%); triangles: relational 
module dominant (ratio ≥ 50%).
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making relational adaptation less likely, whereas smaller intermediate steps would increase ᾱ, favoring relational 
adaptation. The intuition behind this hypothesis is that the relational module can change its sign only when the 
rule reverses. Therefore, when β > 0, if β > α then the intermediate step enhances the violation (increases 
α1 of Fig. 5b) and therefore decreases the probability of a relational adaptation. By contrast, β < α decreases 
the magnitude of the violation and therefore, increases the probability of a relational adaptation. The effect of a 
negative β is similar. This time, the focus is on the transition (α → β), where −β takes the role of α2 of Figure 
5b.

To test this hypothesis, we trained ANNs using the α → β → −α paradigm, using 160 image pairs for each 
rule (total 160 × 3 = 480 image pairs). For each pair (α, β) we trained 50 ANNs and computed the fraction of 
networks in which the sign of θ changed from image pair 160 (after the network learned the α rule) to image 
pair 480 (after the network learned the −α rule). The results are depicted in Fig. 6a. Then, for each value of α 
and β, we computed ᾱ by fitting a logistic function to the computed fraction as a function of α, as in Fig. 5a. 
The values of ᾱ as a function of β are presented in Fig. 6b. Indeed, for large values of |β|, ᾱ was smaller than 
that computed in the α → −α paradigm (dashed horizontal line, computed in Fig. 5a), while small values of |β| 
increased ᾱ. These findings demonstrate that adaptation pathways can be influenced by the sequence of changes 
between them. By strategically introducing an intermediate step, we can shift the boundary between relational 
and representational adaptation, effectively shaping the learning process. Specifically, small values of β increase 
the probability that the relational network would adapt.

Simplified model analysis
Setting up the model and loss function
To gain an analytical understanding as to why small and large violations lead to qualitatively different adaptation 
mechanisms, and the extent to which these results depend on the particularities of the model that we studied, 
we considered adaptation to violation in a simplified model, in which the pair of images was replaced by a pair 
of scalars, denoting the predictive features in the pair of images. That is, x = x and x′ = x′ and their relation is 
their difference, x′ − x = α.

Now, that the feature is explicitly provided to the agent, we model the representational module using a single-
weight linear encoder, Zw(x) = wx. Under this formulation, the difference in the representations of the pair of 
stimuli is simply ∆Z = wx′ − wx = wα. The corresponding loss function then becomes

	 L̃ (w, θ) = (wα − θ)2 + λ
(
(wα)2 + θ2 − r2)2

.� (3)

This loss function captures two key components: (1) the squared error between the representational difference 
wα and the relational expectation θ, and (2) a regularization term ensuring that solutions remain on a ring.

SGD dynamics and differential equations
The advantage of this simplified formulation is that we can now use mathematical techniques, borrowed from 
the field of non-linear dynamics, to analytically characterize the adaptation dynamics32. In the limit of an 
infinitesimally small learning rate, the SGD dynamics that acts to minimize the loss function can be expressed as 
a set of differential equations governing the evolution in time (a proxy of example pairs) of w and θ33:

Fig. 6.  Intermediate learning step: influence on adaptation pathways. The threshold between relational and 
representational adaptation (ᾱ) is modulated by the magnitude of an intermediate step β. (a) The fraction 
of networks that adapt θ for training with an intermediate step α → β → −α for various pairs of (α, β). 
(b) Large values of |β| lower ᾱ, promoting representational adaptation, while small |β| increases ᾱ, favoring 
relational adaptation. The gray dashed line represents ᾱ in the absence of an intermediate step, highlighting 
how structured transitions can shape the adaptation process.
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ẇ = −α (wα − θ) − 2λα2 (
(wα)2 + θ2 − r2)

w

θ̇ = (wα − θ) − 2λ
(
(wα)2 + θ2 − r2)

θ.
� (4)

The evolution of w and θ over time represents the adaptation of these parameters through learning with 
successive example pairs. Thus, by analyzing the temporal dynamics of w and θ, we can gain insight into the 
adaptation pathway of the system. Instead of directly examining the dynamics of w, it is more instructive to focus 
on the dynamics of the output of the representational module, ∆Z = wα. Substituting this into the differential 
equations, we obtain the following system of equations:

	

1
α2 ∆̇Z = (θ − ∆Z) − 2λ

(
∆Z2 + θ2 − r2)

∆Z

θ̇ = (∆Z − θ) − 2λ
(
∆Z2 + θ2 − r2)

θ.
� (5)

Recall that when studying the adaptation of the ANN to the image pairs, we identified two solutions that 
minimize the loss: ∆Z = θ = ±r/

√
2. The two solutions are associated with the same level of performance, 

they differ in how the system encodes the relationship: when ∆Z = θ = r/
√

2, the predictive feature increases, 
whereas when ∆Z = θ = −r/

√
2, it decreases, as discussed in Fig. 2.

In gradient-based systems, learning dynamics converge to a stable fixed point where ∆̇Z = θ̇ = 0. In the 
Methods section we prove that ∆Z = θ = ±r/

√
2 are the only stable fixed points of the dynamics, Eq. (5). Thus 

in general, the dynamics would converge to either the positive or the negative fixed point.

Adaptation pathways following rule reversal
To investigate the dynamics following rule reversal, we consider a system that has converged to the positive 
fixed point ∆Z = θ = r/

√
2. Following the reversal of the rule, the sign of the representational difference ∆Z  

flips to −r/
√

2. As a result, the value of (∆Z − θ)2 in the loss becomes non-zero, reflecting the violation of the 
expected relationship.

At this point, the gradient dynamics would resolve the violation by either driving the system back to the 
positive fixed point ∆Z = θ = r/

√
2, adapting the representational module, or to the negative fixed point 

∆Z = θ = −r/
√

2, which adapts the relational expectation (as illustrated in Fig. 3).
To understand how the magnitude of α affects this adaptation pathway, we first considered the dynamics of 

a weakly regularized system, where λ ≪ 1. In this case, the dynamics first minimize the unregularized part of 
the loss, (∆Z − θ)2, driving the system to ∆Z = θ, and then the regularization kicks in to set the system on the 
ring ∆Z2 = θ2 = r2/2. We show below that this sequential adaptation pattern – first aligning ∆Z  and θ, then 
enforcing the regularization constraint – provides a key insight into the behavior of the more complex ANN.

Without regularization, the dynamical equations simplify to

	

∆̇Z = −α2 (∆Z − θ)
θ̇ = (∆Z − θ) .

� (6)

When α > 1, the dynamics of ∆Z  is faster than that of θ (because of the α2 prefactor). Consequently, adaptation 
is expected to be dominated by a change in the sign of ∆Z . By contrast, when α < 1, adaptation is expected 
to rely on a change in θ. This can be shown more formally. In the Methods section we show that the dynamics 
converge to

	
∆Z = θ = α2θ(0) + ∆Z(0)

α2 + 1 ,� (7)

where ∆Z(0) and θ(0) denote the values of ∆Z  and θ before the reversal.
Substituting the initial conditions ∆Z = −r/

√
2 and θ = r/

√
2, we find that after reversal, θ will change 

its sign if and only if α < 1.
Considering now the full model (Eq. (5)), we identify the following symmetry: Immediately after reversal 

−∆Z (0) = θ (0). Considering the equations for −∆̇Z  and θ̇, they are also symmetric to swapping −∆Z  and 
θ, as long as α2 is replaced by 1/α2. Consequently, if for a particular value of α′, ∆Z  would change its sign in 
the reversal protocol, it would be θ which changes its sign if 1/α′ is used, indicating that also in the full model, 
α = 1 is the transition point between the two, qualitatively-different modes of adaptation.

Figure 7 depicts these dynamics in the reversal paradigm using a phase portrait for two values of α. When α is 
large (left) adaptation is dominated by a change in ∆Z . The opposite, a dynamics that is dominated by a change 
of θ manifests when α is small (right). Notably, in simulating the model, we used a relatively weak regularization, 
λ = 0.1. As a result, initially, the dynamics drive the system to the line ∆Z = θ, minimizing the unregularized 
term by either changing the sign of ∆Z  or θ, depending on the size of the violation. Then, when ∆Z ≈ θ, the 
regularization term pushes the system towards one of the two fixed points, where ∆Z2 = θ2 = r2/2.

The more general case of α1 → −α2
We also studied the system’s dynamics in the more general adaptation of α1 → −α2. In this case, the 
initial state ∆Z(0) would generally not be −r/

√
2 like in the symmetric rule reversal. Instead, it would be 

∆Z(0) = − r√
2

α2
α1

 (see Methods). This is while θ(0) remains the same. Therefore, the ratio α2/α1 adjusts the 
distance of the system from the ordinates (y-axis), whose crossing corresponds to changing the sign of ∆Z . The 
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larger α2/α1, the longer is the path required for a change in the sign of ∆Z  (Fig. 8a). Another modification to 
the dynamics is that α in Eq. (6), which sets the gradient of ∆Z  compared with those of θ, is replaced by α2. 
Therefore, the value of α2 determines the direction of the gradient, or the relative speed of adaptation of the two 
modules: The larger α2, the more the gradient is aligned with ∆Z  compared to θ (more horizontal) (Fig. 8b).

Together, we can view the dynamics as a “race” between the two adaptation pathways. The ratio α2
α1

 determines 
the starting points of the two adaptation pathways, and hence the relative distance to the finish line. The larger 
this ratio, the smaller is the relative distance required for adaptation by the relation module. The larger α2, the 
faster is the dynamics of ∆Z , compared to that of θ. Together, the relation module is more likely to adapt when 
the ratio α2

α1
 is large and when α2 is small (Fig. 8c).

As discussed above, when regularization is weak, we can analytically predict the “winner” from the ratio 
between the relative distances of ∆Z  and θ to the finish line, α2/α1, and the ratio between their speeds, α2

2. If 
α1α2 > 1, then the representational module would adapt; when α1α2 < 1 the relational module adapts (see 
Methods). This prediction is a good fit for the regularized simplified model of Fig. 8c, in which λ = 0.1. This 
prediction also fits the adaptation pattern of the ANN in the more complex images task, when adjusted such 
that α1α2 > ᾱ2 is the condition for adapting the representational module (Fig. 5b and S5). Overall, our results 
suggest that the multiplication of α1α2, which precisely determines the adaptation pathway in the limit of weak 
regularization, is a good fit to to how α1 and α2 affect the adaptation pathway in this model.

Discussion
In this study, we explored how artificial neural networks (ANNs) resolve relational inconsistencies when faced 
with violations of expected relationships. Our findings reveal two distinct adaptation pathways that naturally 
emerge from gradient-based learning dynamics: when violations are small, networks primarily adjust their 
relational expectations, whereas extreme violations lead to modifications in object representations, preserving 
the initial relational expectation. This dichotomy can account for the experimentally observed inverted U-shaped 
dependence of expectation adaptation on violation magnitude, where moderate expectation violations lead to 
learning, but extreme violations often result in resistance to change.

The key component of our theoretical finding is that a violation of expectation can be resolved in more 
than just one way. Therefore, in case of relational inconsistency, whether or not the relational component will 
eventually adapt depends on whether adaptation of this component is “sufficiently fast”, compared with the 
alternatives route for adaptation—the adaptations of the representational module. In response to the violation 
of expectation, a “race” between the two adaptation pathways begins. The ratio between the new rule and the 
original rule determines the starting points of the two adaptation pathways, and hence the distance to the finish 
line. The larger this ratio, the smaller is the distance required for adaptation by the relation module, relative to the 
representational module. Moreover, despite the fact that we used the same learning rule for the representational 
and relation modules, SGD, which is characterized by a single learning rate, the “speed” of adaptation of the two 
modules is not equal. The larger the magnitude of the “new” rule (α2) the slower the relation module adapts 
relative to the representational module.

Our results indicate that the product of the initial and final rules α1α2 is a crucial parameter in determining 
the adaptation pathway. When this product is large, the representational module adapts and when it is small the 

Fig. 7.  The adaptation dynamics in the ∆Z × θ plane. Visualization of the two adaptation pathways as 
two trajectories in the simplified model’s internal state represented by ∆Z  and θ. The arrows represent 
the “downhill” direction for learning: the opposite direction of the loss gradient with respect to ∆Z  
and θ. The blue and red nullclines represent the loci where ∆̇Z = 0 and θ̇ = 0, respectively. Their 
intersections correspond to fixed points in which learning halts. They intersect at the stable fixed points at 
∆Z = θ = ±r/

√
2, and at the unstable fixed point ∆Z = θ = 0. Before reversing the rule, the network start 

with positive ∆Z  and θ. Following the reversal of the rule, ∆Z  flips its sign (yellow circles). Adaptation when 
α is large (left panel) leads to reversing the sign of ∆Z , returning to the positive fixed point, whereas when α is 
small (right panel) it is θ that changes its sign to match the negative ∆Z .
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relational module adapts. In the real world, the rule sizes correspond to an objective difference between objects. 
Extrapolating our results to the scientist example, if particles A are expected to be larger than particles B by α1, 
and the novel observation is that they are smaller by α2, then the observation would be dismissed if α1α2 would 
be larger than some threshold that depends on the scale α.

In our study, the core relationships we investigated were defined by changes in specific predictive features: 
shapes size in the main manuscript, and grayscale color and number of shapes in the Supplementary Materials. 
All other features varied randomly between image pairs and were categorized as irrelevant features. Our prior 
research has demonstrated that the quantity of these irrelevant features directly correlates with the difficulty of 
similar tasks34. Consequently, we integrated these irrelevant features into our experimental design to slightly 
increase task complexity, aiming for a more realistic scenario. We hypothesize that as the networks achieve high 
performance, they learn to effectively disregard these irrelevant features. Crucially, when the rule is reversed in 
our experiments, only the predictive feature’s rule is altered. Therefore, we do not anticipate that the number or 
identity of these irrelevant features will influence our reported results.

Reconciling prior beliefs with conflicting evidence is commonly framed within a Bayesian framework17,18. 
To connect our findings to this approach, consider a scenario with two competing hypotheses: one suggesting 
the predictive feature (e.g., size) increases, and the other suggesting it decreases. When an agent begins with 
a stronger belief in the “increase” hypothesis and then encounters evidence challenging this belief, Bayesian 
updating provides a formal way to revise these beliefs. This revision depends on two key factors: the initial 

Fig. 8.  How initial and new rule strengths determine the adaptation pathway. This figure explores how the 
network adapts when the rule changes from an initial strength (α1) to an opposite rule of a different strength 
(−α2). The choice of adaptation pathway can be understood as a “race” between the representational module 
(∆Z) and the relational module (θ). Two factors determine the winner. First, as illustrated in panel (a), 
the ratio of the new rule’s strength to the old one (α2/α1) determines the “starting position” for the race 
(here, α2 is fixed at 1, while α1 is 2 for the blue trajectory and 0.5 for the red). Second, as shown in panel 
(b), the strength of the new rule (α2) influences the relative “speed” of adaptation, changing the direction 
of the learning process (we used α2 = 0.5 for the blue trajectory and α2 = 2 for the red, while fixing the 
starting points by setting α1 = α2). (c) The final race outcome for various combinations of α1 and α2. The 
boundary between the two pathways is determined by the combined strength of the rules. Specifically, the line 
α1α2 = 1 (black line) is a good fit for this boundary.
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confidence in each hypothesis (prior beliefs) and how well each hypothesis explains the new observation 
(likelihood of the evidence). The Bayesian framework provides a clear decision threshold – the point at which 
belief should shift from one hypothesis to the other. For the Bayesian model to account for the inverted U-shaped 
dependence of relational adaptation to the size of the violation, observed experimentally as well as in our ANN 
model, we need a model in which large α1 and α2 support belief consistency. If we interpret the magnitudes of 
α1 and α2 as measures of the strengths of evidence they provide, it is easy to see why a strong initial evidence, in 
the form of a large α1 would do that. However, it is challenging to interpret belief consistency when α2 is large. 
This is because stronger contradictory evidence (larger α2) is expected to increase the likelihood of hypothesis 
revision rather than decrease it. It is possible to account for the inverted U-shaped dependence in a Bayesian 
framework if we add a measure of confidence in the observations, and posit that the confidence in the first set 
of observations (associated with α1) is larger than that of the second set of observations (associated with α2).

Traditional psychological perspectives often interpret belief persistence in the face of contradictory evidence 
as a cognitive bias35,36. Our findings, however, suggest an alternative view: rather than mere bias, this persistence 
may reflect an adaptive learning strategy that stabilizes relational expectations by integrating violations through 
representational adjustments. A more recent theory, ViolEx20–23, posits that when violations are extreme, 
immunization mechanisms act to devalue or reframe the new information. Our findings are consistent with 
ViolEx, but suggest that the immunization mechanism naturally emerges from the same learning process that 
drives expectation updates, with the outcome determined by which adaptation pathway “wins the race.”

In the paper, we found that intermediate adaptation steps can be used to reshape the adaptation pathway. 
Specifically, a small intermediate step promoted the adaptation of the relational expectation. This result aligns 
with findings in cognitive-behavioral therapy and education, where gradual exposure to conflicting information 
enhances adaptive outcomes. For example, therapies designed to modify dysfunctional expectations, such as 
exposure therapy for anxiety disorders, benefit from structured interventions that introduce moderate violations 
instead of extreme ones37,38. Similarly, in education, conceptual change is more effective when scaffolded 
gradually rather than introduced through abrupt contradiction19,39,40.

The two adaptation pathways discussed in this work are categorical (representational vs. relational). But 
notably, there are multiple ways to adapt, even within each category. Specifically, the representational module is 
characterized by a large number of parameters, more parameters than examples. Therefore, there can be multiple 
combinations of parameters that, for the same set of examples, yield the same representational adaptation. The 
relational module in our model is rather simple, but in a more general model we expect a similar multiplicity 
of possible adaptation pathways within the relational pathway. Indeed, different adaptation pathways within 
a module have been a subject of research in the cognitive sciences. For example, an inconsistency between 
a person’s unhealthy habit of smoking and the warning against the harmful effects of smoking presented on 
a tobacco package can be resolved in several ways (that do not change the habit): The smoker can posit that 
benefits associated with appetite suppression outweigh the cancer-related health risks, or alternatively, question 
the research that links smoking to increased mortality41. Both solutions are consistent with a change to the 
representation of smoking. A major limitation of our model is that it is not informative about the determinants 
of within-category adaptation pathways.

Another limitation of our model is that it modeled passive agents who get a sequence of pairs of inputs and 
are required to learn their relationships. However, humans actively engage in the learning process by performing 
various comparison and manipulation patterns of stimuli29,30. This active participation is useful for establishing 
relational behavior. The active manipulation of stimuli can be interpreted as a form of representational 
adaptation, where the learner actively re-frames or re-processes the sensory input by physically interacting with 
it, allowing the learner to adjust their internal representations of objects to resolve inconsistencies and make new 
information compatible with existing or emerging relational rules.

By examining the intrinsic learning dynamics of neural systems, our work provides insights into the 
mechanisms that govern adaptation to inconsistencies. The competition between representational and relational 
adaptation pathways naturally produces the non-monotonic patterns of belief updating observed in human 
cognition. These findings have implications for understanding learning processes across cognitive, educational, 
and therapeutic contexts. Further work is needed to explore the nuances of adaptation within the representational 
and relational categories, as well as to experimentally test the model’s predictions.

Methods
Code availability
A PyTorch42 code that generates the results and figures of this paper is available at:​h​t​t​p​s​:​​/​/​g​i​t​h​​u​b​.​c​o​m​​/​T​o​m​e​r​​-​B​
a​r​a​​k​/​r​e​l​a​​t​i​o​n​a​l​​_​e​x​p​e​c​​t​a​t​i​o​n​_​v​i​o​l​a​t​i​o​n​s.

Order discrimination task
The order discrimination task was designed to assess the ability of ANNs to determine the correct order of image 
pairs based on a specific feature. As written in the main text, each image in the pair depicted shapes arranged on 
a 3 × 3 grid and was characterized by five features: grayscale color, number of shapes, size, grid arrangement, 
and shape type. The images were 224 × 224 pixels in size and grayscale (they consisted of 3 channels with 
identical values). The size of the shapes was defined as the diameter of the circle enclosing them.

The “correct” order in the task was determined by the identity of the relevant feature (color, size, or number), 
termed the predictive feature, and whether this feature increased or decreased from left to right. To construct 
the training set, the predictive feature values were randomly selected from a uniform distribution over possible 
values for the left image. The corresponding values for the right image were then calculated by applying the 
rule parameter α to the left image’s values. Non-predictive features were randomly selected from a uniform 
distribution for each image pair, remaining constant within the pair.
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For each α  and tested network, we constructed a training set that consisted of 160 image pairs that 
demonstrated that rule. To evaluate the performance of an ANN in this task, we tested its ability to classify the 
correct order of 32 novel image pairs. In Figs. 2a-b and 4b, we averaged the classification accuracy of 100 ANNs 
and estimated the confidence interval based on the standard error.

In the main text of this paper, we presented the results when the predictive feature is the size. Similar results 
were obtained when the predictive features were color or number, and these are presented in the Supplementary 
Information (Figs. S1-S4). For full implementation of the task, see Images.py in the paper’s GitHub site:​h​t​t​p​s​:​​/​/​g​
i​t​h​​u​b​.​c​o​m​​/​T​o​m​e​r​​-​B​a​r​a​​k​/​r​e​l​a​​t​i​o​n​a​l​​_​e​x​p​e​c​​t​a​t​i​o​n​_​v​i​o​l​a​t​i​o​n​s

The ANN
The representational module Zw(x) consisted of three convolutional layers (number of filters: 16, 32, 32; kernel 
sizes: 2, 2, 3; strides: all 1; padding: all 1) followed by one fully-connected linear layer (taking a 2592-dimensional 
vector to a one-dimensional output). Three ReLU activation functions were applied after each convolutional layer, 
and two Max-Pool layers (kernels: 4 and 6, strides: all 1) were applied after the second and third convolutional 
(+ReLU) layers. The parameters of Zw were randomly initialized using PyTorch’s42 default initialization (uniform 
distribution scaled by 1/

√
N  where N is the number of the layer’s input neurons).

Given a training set, we optimized the randomly initialized ANN’s parameters to minimize the regularized 
loss function (2) with the vanilla SGD optimizer (lr = 0.004). For the regularization term, we used the 
hyperparameters λ = 4 and r2 = 0.1. We used a batch size of 2 image pairs and applied 20 optimization steps 
per batch.

To assess the adaptation pathway of an ANN, we measured its parameter θ during training. To complement 
this measure, we also measured the average ∆Z  of the ANN over 32 test image pairs from the same training set 
distribution (with the same α). A network that changed its sign of θ and kept the sign of ∆Z  after rule reversal 
was classified as adapting its relational module. A network that kept the sign of θ while changing the sign of ∆Z  
has adapted its representational module. We excluded networks that kept or changed the signs of both θ and 
∆Z  together. These networks necessarily failed the task. The fraction of excluded networks was less than 1%: 
Fig. 5a: 3/1800. The fraction of networks that adapted their relational module (e.g., in Fig. 5a) was obtained by 
#θ/ (#Z + #θ) where #Z  is the number of networks that adapted ∆Z , and #θ is the number of networks 
that adapted θ.

Calculating the inflection point in Fig. 5a
To calculate the inflection point ᾱ, we fitted a logistic function to the results of how many networks adapted their 
relational module as a function of α. Specifically, we fitted the two parameters c and d of the logistic function 

1
1+ec(α−d) . The inflection point was defined as ᾱ = d. The 95% CIs of ᾱ correspond to 1.96 · SE(d) where 
SE(d) is the standard deviation error of the estimation of d using SciPy’s43 curve fitting function.

Simplified model: two attractive fixed points
Because this is a gradient system, the dynamics will necessarily converge to the (stable) fixed point(s) of the 
dynamics. To find the fixed point(s), we consider the two nullclines, ∆̇Z = 0 and θ̇ = 0. From these equations 
we write,

	

|(∆Z − θ)| = 2λ
∣∣(∆Z2 + θ2 − r2)∣∣ |∆Z|

|(∆Z − θ)| = 2λ
∣∣(∆Z2 + θ2 − r2)∣∣ |θ| .

� (8)

Subtracting the equations, we get that 
∣∣(∆Z2 + θ2 − r2)∣∣ (|∆Z| − |θ|) = 0. If 

∣∣(∆Z2 + θ2 − r2)∣∣ = 0 then 
from Eq. (5), ∆Z = θ at the fixed point. Therefore together, |∆Z| = |θ|.

The nullclines are depicted in Fig. 7. The fixed points can be computed analytically by substituting |∆Z| = |θ| 
in the nullclines equations. We find that there is a trivial fixed point at ∆Z = r = 0. A linear stability analysis 
reveals that this fixed point is unstable. Additionally, there are two additional fixed points ∆Z = θ = ± r√

2 . 
These fixed points satisfy both L  and the regularization term. We will discuss their stability shortly. When the 

regularization term is large, λ > 1
r2 , there are two additional fixed points, ∆Z = −θ = ±

√
r2− 1

λ
2 , but a linear 

stability analysis reveals that they are unstable. Because the dynamics is driven by a gradient of a loss function, 
then it necessarily converges to a fixed point. Because the ∆Z = θ = ± r√

2  are the only non-unstable fixed 
points, they are necessarily the only attractors of the dynamics.

Weakly regularized simplified model: exact solution
To understand how the magnitude of α affects this adaptation pathway, it is useful to consider the dynamics of 
a weakly regularized system, where λ ≪ 1. In this case, the dynamics first minimize the unregularized part of 
the loss, (∆Z − θ)2, driving the system to ∆Z = θ, and then the regularization kicks in to set the system on 
the ring ∆Z2 = θ2 = r2/2.

Without regularization, the dynamical equations simplify to

	

∆̇Z = −α2 (∆Z − θ)
θ̇ = (∆Z − θ) .

� (9)
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These two equations are linearly dependent, implying that the unregularized system converges to a point on a 
line attractor that depends on its initial state. Specifically, due to the equations being linearly dependent, the 
value ∆Z + α2θ is conserved during optimization and its value depends on the initial state ∆Z(0) + α2θ(0). 
This is true also at the fixed points, where ∆Z∗ = θ∗. Plugging the fixed point solution to the conservation law 
provides the exact point the system would reach on the line attractor ∆Z = θ:

	
∆Z = θ = α2θ(0) + ∆Z(0)

α2 + 1 ,� (10)

In the rule reversal case, assuming that the system starts from the positive fixed point, the initial values are 
∆Z(0) = −r/

√
2 and θ = r/

√
2. Substituting this initial state, we find that the unregularized system is driven 

to the following point on the line attractor

	
∆Z∗ = θ∗ = r√

2
α2 − 1
α2 + 1 .� (11)

When approaching the the line attractor, (∆Z − θ)2 becomes small, comparable to the regularization term 
in Eq. (5). Therefore, the regularization would then become more dominant and drive the system towards 
∆Z∗2 = θ2 = r2/2. The result we arrived at, Eq. (11), shows that whether α2 is smaller or larger than 1 
determines the sign of the fixed point. α2 > 1 corresponds to a fixed point where both ∆Z  and θ are positive, 
keeping the original sign of θ, whereas α2 < 1 leads to a negative fixed point, changing the sign of θ. Therefore, the 
value of α2 distinguished between the two adaptation pathways, and the inflection point is at ᾱ = 1. We verified 
this analysis by simulating the simplified model with weak regularization. For example, Fig. 7 demonstrates the 
dynamics when λ = 0.1 for a strong violation α > ᾱ and a weak violation α < ᾱ. Initially, the dynamics drive 
the system to the line ∆Z = θ, minimizing the unregularized term by either changing the sign of ∆Z  or θ, 
depending on the size of the violation. Then, when ∆Z ≈ θ, the regularization term pushes the system towards 
one of the two fixed points, where ∆Z∗2 = θ2 = r2/2.

In the more general case, where the rule changes from α1 to −α2, the initial state of ∆Z  before the adaption 
changes. To see this, remember that ∆Z = wα where α is the current rule. At the first learning phase, assuming 
that the system converged to the positive fixed point, the value of the representational module’s weight at the 
fixed point, w∗, is given by ∆Z∗ = w∗α1 = r/

√
2. When flipping the rule, w∗ remains as it is, while ∆Z  is 

now defined with α2. Therefore, ∆Z(0) = −w∗α2 = − r√
2

α2
α1

. The point on the line ∆Z = θ where the system 
approaches depends on this initial state (Eq. (7)):

	
∆Z∗ = θ∗ = r√

2
α2

2 − α2
α1

α2
2 + 1 .� (12)

This equation shows that whenever α1α2 > 1, the system adapts its representational module, while for 
α1α2 < 1 it would adapt its relational module. We verified this prediction in the weakly regularized simplified 
model in Figures 5b and S5.

Data availability
The data that was used for the order discrimination tasks was generated in real-time by an algorithm. The gen-
erating code is available on this project’s GitHub page: ​h​t​t​p​s​:​​​/​​/​g​i​t​h​u​​b​.​c​o​​m​/​T​o​m​​​e​r​-​B​a​r​​​a​k​/​r​e​​l​a​t​i​o​​n​​a​l​_​e​x​​p​e​c​t​a​t​​i​o​n​
_​v​i​o​l​a​t​i​o​n​s.
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Two pathways to resolve relational inconsistencies:
Supplementary information

The results for other predictive features: Color and Number

color

number

Figure S1: Task performance. Left: The average test accuracy of 100 networks trained on a task where the
predictive features were color (top) or number (bottom). The change rule was α = 0.5. Right: The final test
accuracies for various values of α, averaged over 100 networks per α. Error shades and bars correspond to 95% CI.
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Large dissonance Small dissonance
color

number

Figure S2: Simulating a dissonance. Initially, the predictive feature (top: color, bottom: number) increases by
α. Then, the relationship is reversed to −α. The dissonance magnitude is represented by α. Left: large dissonance
α = 0.8; Right: small dissonance α = 0.2.

color

number

Figure S3: Performance and adaptation following rule reversal. 100 networks were presented with 160
examples in which α = 0.8 (blue) or α = 0.2 (red). Then, we reversed this rule, simulating a cognitive dissonance.
From left to right, as a function of training examples: The rule α; Classification accuracy of the networks during the
task; The ANNs’ ∆Z; The ANNs’ θ. The lines are the averages, and the shades correspond to 95% CI.
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color

number

Figure S4: Adaptation pathway versus dissonance magnitude. For the color (left) and number (right) pre-
dictive feature, the percentage of networks that adapted their input representation ∆Z to match the expected θ
increases a function of α. The inflection points between the adaptation pathways, ᾱ, were obtained by fitting the
results (black) with a logistic function (green). Error bars correspond to 95% CI (Wilson estimation).
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Fitting the adaptation pattern of the ANN

Figure S5: Adaptation patterns for general rule reversals for the ANN. The adaptation pattern, taken from
(Fig. 5), with the predicted inflection line α1α2 = ᾱ2 = 0.342 (black solid line). The value ᾱ was obtained from the
symmetric rule reversal case, represented by the dashed black line.
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Addendum

In the Discussion of our second paper [23], we addressed how Bayesian

models might account for the inverted U-shaped relationship between the

magnitude of an expectation violation and the resulting adaptation. We

hypothesized that the stability of expectations in the face of extreme vio-

lations could be modeled by adding a “confidence-in-observation” variable

that prevents the updating of prior beliefs when data is deemed untrust-

worthy. A rigorous computational realization of this principle is found in

the “latent cause” theory of memory modification proposed by Gershman

et al. [24].

Gershman et al. [24] propose a normative framework consisting of two in-

teracting sub-systems: an associative module that learns correlations, and

a structure learning module that partitions experience into latent causes. In

this framework, the agent’s internal representation of a state is not merely

the sensory object, but the object conjugated with its inferred latent cause.

Consequently, the inference of a new latent cause constitutes a fundamen-

tal representational shift.

This structural mechanism effectively internalizes the “confidence” variable

we hypothesized. The model continuously evaluates the likelihood that the

current observation was generated by the active latent cause. Small pre-

diction errors maintain a high likelihood (high confidence in the current

structure), leading to parametric updating of the existing association. Con-

versely, large prediction errors—such as those occurring during extreme

violations—drastically reduce the likelihood that the current cause is valid.

Rather than forcing an update on a low-confidence representation, the

structure learning module infers a new latent cause. This segmentation

protects the original memory trace from interference and re-represents the

object as belonging to a distinct generative context.
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ABSTRACT

Previous research suggests that when humans encounter observations that strongly contradict their expectations, they tend to
avoid revising those expectations. Instead, they seek alternative explanations to preserve their original beliefs. In earlier work,
we reconstructed this nonmonotonic adaptation pattern in a model capable of learning relationships between pairs of stimuli.
The model had distinct representational and relational modules and we found that the learning dynamics constitutes a "race"
between two adaptation pathways: adapting relational expectations or reinterpreting the stimuli. The model predicted that
larger violations bias the outcome of that race toward stimuli reinterpretation. In this paper, we test whether this prediction holds
for humans. Participants learned a relational rule between ambiguous visual stimuli and were then exposed to rule reversals of
varying magnitudes. To evaluate the adaptation pathway of the participants, we primed them towards one input interpretation
and evaluated whether this interpretation has changed after adaptation. A preliminary experiment yielded non-significant results,
possibly because we used the same task for priming and for testing whether reinterpretation has occurred. A subsequent
experiment, redesigned to circumvent this confound, found that a large violation magnitude significantly increased the likelihood
that participants would reinterpret the stimuli rather than adjust their relational expectation, though the effect size was modest
(p=0.0427, Cohen’s d=0.277). This result is consistent with the model predictions. However, further tests of more nuanced
model predictions, while consistent with the theory, but did not reach statistical significance. We conclude that while our findings
provide modest support for the dual-pathway model’s core prediction, our study primarily highlights the critical challenges in
translating this theory to human behavior.

Introduction

Recent experimental studies indicate that when humans’ expectations are violated, their adaptation is characterized by an
inverted U-shape with the size of violation: They slightly update their expectations following small violations; larger violations
lead to larger modification of their expectations; however, extreme violations diminish the updating of the expectations1–4. The
latter transition, where increasing the violation reduces the adaptation, challenges traditional learning models such as predictive
coding and Bayesian updating, which typically posit more adaptation following larger prediction errors5–8.

In our previous work9, we reconstructed this nonmonotonic adaptation pattern in a model capable of learning relationships
between pairs of stimuli. The model had distinct representational and relational modules. The representational module encoded
low-dimensional object-specific features, while the relational module encoded the expected relationships between those features.
The model was trained with a specific relationship, forming an expectation of it, and was then exposed to stimuli with a reverse
relationship, violating its expectation. When the violations were of moderate magnitude, the relational module was more likely
to adapt. However, when faced with extreme violations, the likelihood of adaptation occurring within the representational
module significantly increased, biasing the system to change stimuli representations and preserve the relational expectation.

Existing empirical studies in humans could, in principle, be reexamined through the lens of the relational framework to test the
model’s validity. However, such post hoc re-examinations would necessarily limit the ability of these studies to support or
disprove the model10. Therefore, to test whether this dual-pathway model of adaptation applies to humans, we designed a novel
experiment structured around the violation of relational expectations. Consider the scenario depicted in Fig. 1a-b. A participant
is presented with two rectangles and is instructed to choose one of them. Unbeknownst to the participant, the "correct" response
is to choose the rectangle associated with a higher ratio of blue (in the figure, the correct rectangles are marked with green
V) and they learn this rule from a binary, "correct"/"wrong" feedback. This establishes an initial state where the stimulus is
represented by its "blue ratio" and the relational expectation is "more is better" (Fig. 1c). Following this, the rule is reversed
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without warning, creating a violation of their expectation. To adapt, the participant can take one of two pathways (Fig. 1d).
They could engage in relational adaptation, maintaining their focus on the blue color but reversing their expectation (i.e., "less
blue is now correct"). Alternatively, they could pursue representational adaptation, switching their representational focus to the
complementary color and preserving their original rule (i.e., "more orange is now correct"). The central question of this study
is: which pathway do humans prefer, and is this choice systematically influenced by the magnitude of the rule violation?

Large violation Small violationa b

c d

Figure 1. Experiment schema. (a) Example of a large violation, where the color ratio difference between "correct" and
"wrong" rectangles is substantial. (b) Example of a small violation, where this difference is subtle. (c) Two equivalent solutions
for learning the initial rule before reversal: Participants can focus on blue and learn that the correct rectangle has "more blue"
(starred point), or equivalently focus on orange and learn that it has "less orange" (circled point). The diagonal line marks
states where the learned rule matches observation. Our design primes participants toward the "more blue" solution. (d) Two
adaptation pathways after a rule reversal. Upon "more blue" being violated, participants can perform relational adaptation
(vertical arrow) by keeping focus on blue but updating the rule to "less blue is now correct," or representational adaptation
(horizontal arrow) by preserving the "more is correct" rule while switching focus to orange.

Disentangling these two adaptation pathways in a behavioral experiment is challenging, as we cannot directly observe a
participant’s internal input representation or relational rule. To overcome this, our experimental design has two critical
components. First, to establish a known starting point, we primed participants to adopt a specific representational focus – in
this case, on the ratio of blue. Second, after the participants adapt to the rule reversal, we implemented a final evaluation
to test whether this initial focus was maintained (signaling relational adaptation) or if it changed (signaling representational
adaptation).

This paper details the experiments that implement this design. We will first describe the experimental flow chronologically,
from the initial priming task, through the relational learning and reversal phases, to the final evaluation. We then report the
findings, including an exploration of two main approaches for the final evaluation query, and compare them with the model’s
predictions. The results provide modest support for the core theoretical prediction while highlighting important methodological
considerations for translating computational theories to human behavior.
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Results

Experimental Procedure

The experiments designed to test our hypotheses followed a three-phase structure, as illustrated in Figure 2a: (1) an initial
priming phase, (2) a relational learning and rule-reversal phase, and (3) a final evaluation phase to assess the adaptation pathway.

a b

c

d

Figure 2. Experiment flow. (a) The three main stages of the experiment. (b) The initial priming task, an identification task
which primed participants to focus on the ratio of a specific color. (c) The relation task, where participants first learned a rule
(e.g., "more blue is correct") and then adapted to a rule reversal. (d) The final evaluation stage, which was designed to probe
which of the colors the participant are finally focused on. The image depicts the two alternatives that we used: A repeated
identification task in Experiment 1 (left), and a direct query method used in Experiment 2 (right).

The experiment began with an initial priming phase consisting of an identification task (Fig. 2b). In this task, participants were
presented with single rectangles composed of two colors, and instructed to click on a slider. Through trial and error, using a
binary feedback, they learned that the relevant feature is the fraction of one of the colors (e.g., blue) and that the task is to use
the slider to indicate this fraction. For example, if one quarter of the area of the rectangle is blue, the correct answer is 0.25± ε ,
where ε is an error toleration term (see Methods). This procedure was designed to prime the participants to focus on the area of
a specific color (e.g., blue) when considering the rectangles.

Next, participants proceeded to the relational learning phase. Here, they were presented with pairs of rectangles, of the same
type as in the first part of the experiment, and were instructed to select one of them. Unbeknownst to them, the "correct"
rectangle was the one associated with either a larger area or a smaller area of the primed color, e.g., more blue (Fig. 2c). Again,
binary feedback was provided to indicate whether the participant answered correctly.

After a participant demonstrated they had learned this rule, the rule-reversal phase began without warning. The rule was
inverted, such that the correct rectangle now had a smaller ratio of that color if it was larger before, or a larger ratio of that color
if it was smaller before. In the example we use here, the rule changed so that the correct rectangle was associated with a smaller
ratio of blue (or, equivalently, a higher ratio of orange). Based on the theory, the violation magnitude is determined by the
magnitudes of the rules before and after the reversal. To test the effect of the violation magnitude on the adaptation pathway,
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we divided participants into two groups based on the magnitude of this violation: In the "small violation" group, the color ratio
difference between rectangles in each pair was 12%, both before and after reversal, whereas in the "large violation" group this
difference was 87%.

We predicted that a small violation would more often lead to a change in the relational expectation whereas a large violation
would more often lead to a change in the representation — changing the color focus of the participants. Thus, the crucial third
phase of the experiment was the final evaluation, designed to determine whether participants had adapted via the relational or
representational pathway. We explored two different methods for this evaluation across two experiments.

Experiment 1: Repeated identification task

In our preliminary experiment, the final evaluation consisted of repeating the identification task from the priming phase with
just one item (Fig. 2d left). We hypothesized that participants who underwent representational adaptation (i.e., switched their
focus from the color associated with the first identification task to the other color) would consequently evaluate the ratio of the
other color when presented with the task again.

The single identification item used for this final evaluation consisted of a rectangle with a 75% ratio of blue. We classified
participants clicking above 50% as focusing on blue and below 50% as focusing on orange.

Fig. 3a depicts the results of this experiment. Contrary to our prediction, there was no significant difference between the two
groups (one-tailed independent samples t-test, t(200) = −0.99, p = 0.84). We did observe a bias in favor of responding in
accordance with the strategy that was successful the first time they performed the task. Thus, we suspect that this "primacy"
effect might have interfered with the current task. Hence, repeating the same task twice may be an unreliable measure of the
representational state they had adopted during the intermediate relational task.

We, therefore, adopted a different experimental strategy in the second experiment.

a b

Figure 3. Adaptation pathways’ dependence on violation magnitude. The fraction of participants who switched their
color focus after rule reversal, categorized by violation magnitude (a) Experiment 1, evaluated with a repeated identification
task. The analysis revealed no significant difference in the rate of representational switching between participants experiencing
large violations (N = 106) and those experiencing small violations (N = 96). (b) Experiment 2, evaluated with a direct query.
Participants experiencing large violations (N = 81) showed significant higher rates of representational adaptation compared to
those experiencing small violation (N = 75), t(154) = 1.73, p = 0.0427, but the effect size was small (Cohen’s d = 0.277).
Error bars represent Wilson score interval estimates.

Experiment 2: Direct query of color focus

To address the potential confounds identified in Experiment 1, we designed a second experiment whose main modification was
that it decoupled the final evaluation from the priming task. Specifically, after participants adapted to the reversed rule, we
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directly queried their representational focus by asking, "What color were you focusing on in the last trial?" (See full changes in
the Methods).

The results of this revised experiment confirmed our central hypothesis (Fig. 3b). Participants in the large violation group were
significantly more likely to switch their color focus than those in the small violation group, providing modest but statistically
significant support for the model’s core prediction that the magnitude of a violation systematically modulates the chosen
adaptation pathway. (t(154) = 1.73, p = 0.0427, Cohen’s d = 0.277).

Caution, however, should be exercised when interpreting these results. We implicitly assumed that participants who chose to
change the representation of the stimuli, did so by focusing on the other color. An alternative way could have been to focus on
the lack of the original color, rather than its presence. For instance, participants who initially learned that "the correct rectangle
has more blue" and then experienced a relational violation could adapt their input representation to either "more orange" or
"more lack of blue". The latter would undermine the experiment’s ability to separate the adaptation pathways, as their focus
would remain on blue even though they had changed their input representation. However, this will not explain the difference
between the two groups.

Experiment 3: Intermediate rules

One of the more nuanced predictions of the theory is that it is possible to influence the adaptation pathway by introducing
intermediate steps before the rule is fully reversed. Based on the theory, we hypothesized that for participants whose initial
and final rules constitute a small violation, introducing an intermediate step of a large magnitude (in either direction) would
increase the propensity for representational adaptation (switching color focus). Conversely, for participants whose initial and
final rules constitute a large violation, an intermediate step with a smaller rule magnitude would decrease this propensity.

We designed four conditions to test this prediction. To decrease the propensity for representational adaptation relative to a
standard large violation condition, participants experienced intermediate steps of a smaller magnitude:

• Contrast reducing: The rule sequence was 87% → 12% →−87%.

• Undershooting: The rule sequence was 87% →−12% →−87%.

To increase the propensity for representational adaptation relative to the small violation condition, participants experienced
intermediate steps of a larger magnitude:

• Contrast enhancing: The rule sequence was 12% → 87% →−12%.

• Overshooting: The rule sequence was 12% →−87% →−12%.

Our findings were directionally consistent with the hypothesis but did not reach statistical significance (Fig. 4). For instance,
the ’Contrast enhancing’ group showed a higher rate of switching than the ’Small violation’ group, but the difference was
not significant (t(172) = 1.18, p = 0.12). Similar results were true for the ’Undershooting’ group (t(134) = 1.06, p = 0.14).
The conditions that were supposed to reduce the proportion of representational adaptation did not reach significance as well.
The ’Contrast reducing’ group switched color focus less frequently than the ’Large violation’ group, but this difference was
also not significant (t(176) =−0.55, p = 0.29). A similar non-significant result was obtained for the ’Overshooting’ group
(t(149) =−0.89, p = 0.19).

When combining all four intermediate conditions (N = 327), the overall tendency to switch color focus (73.4%) was positioned
between the small and large violation groups, as predicted. However, the combined group was not significantly different
from either the small violation group (t(400) = 1.333, p = 0.0928) or the large violation group (t(406) =−0.834, p = 0.2028).
Therefore, while the results align with the model’s qualitative predictions, they do not provide statistically robust evidence that
these intermediate steps effectively steer the adaptation pathway in human participants.
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Figure 4. The effect of intermediate adaptation steps on the final adaptation pathway. The fraction of participants
who switched their color focus is shown for the baseline small violation group (light blue; N = 75) and large violation group
(dark blue; N = 81), alongside four intermediate conditions. Two conditions were designed to potentially increase color focus
switching from the small violation baseline: Contrast enhancing (light green; N = 99) and Overshooting (light red; N = 70).
Two other conditions were designed to potentially decrease switching from the large violation baseline: Contrast reducing (dark
green; N = 97) and Undershooting (dark red; N = 61). While the trends for the intermediate groups were in the hypothesized
directions relative to the baseline groups, the differences were not statistically significant. Error bars represent Wilson score
interval estimates.

Discussion

This study provides the first direct empirical test of a dual-pathway model of adaptation to relational expectation violations.
Our central hypothesis was that the magnitude of a violation would determine the adaptation pathway, with larger violations
making it more likely for individuals to reinterpret stimuli (representational adaptation) rather than update their existing rule
(relational adaptation). While the findings offer modest support for this core prediction, they also underscore the significant
challenges in translating the computational theory into a behavioral experiment with human participants.

Our primary finding that participants experiencing large violations were more likely to switch their representational focus
compared to those experiencing small violations provides statistically significant support for the model’s central prediction.
This result suggests that humans, like the model, exhibit different adaptation strategies depending on the severity of expectation
violations. The finding aligns with emerging evidence from other domains showing that extreme violations can lead to
qualitatively different cognitive responses than moderate ones. However, the small effect size (Cohen’s d = 0.277) and p-value
near the significance threshold (p = 0.0427) raise questions about the robustness and importance of this result. The magnitude
of the difference between conditions, while statistically detectable, may reflect relatively subtle cognitive processes that are
easily overwhelmed by individual differences or task-specific factors.

Our experiments demonstrate the methodological difficulties in measuring internal cognitive states. Our initial experiment
(Experiment 1) failed to support the hypothesis and showed a non-significant trend in the opposite direction. We believe
this was due to a methodological confound where participants’ memory of the initial priming task interfered with the final
evaluation. This led us to redesign the evaluation in Experiment 2 to be a direct query about the participant’s focus. The contrast
between the outcomes of Experiment 1 and 2 demonstrates how human-specific factors, particularly memory, can be a powerful
confounding variable that must be carefully managed in experimental design.

A primary methodological contribution of this study is the application of a psychophysical framework to investigate the
abstract cognitive process of relational learning. We attempted to distill the complexity of learning a relationship into a simple,
quantifiable task: determining whether a single, continuous variable—the ratio of blue to orange in a rectangle—should be
increased or decreased to achieve a correct outcome. This design moves beyond traditional paradigms by creating a tightly
controlled environment where the "rule" is not a complex logical statement but a simple directional judgment on a perceptual
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continuum ("more is better" vs. "less is better"). While the modest effect sizes and methodological challenges we encountered
suggest that human cognition does not map onto this simplified model as neatly as an artificial neural network, this experimental
paradigm lays the groundwork for future research. It provides a template for how psychophysical methods can be used to probe
the internal representations and adaptation mechanisms that underlie how we learn and modify abstract relationships.

Beyond these methodological considerations, further experiments designed to test more nuanced predictions of the theory
yielded results that were directionally consistent with the model but did not achieve statistical significance. Specifically,
introducing intermediate adaptation steps (Experiment 3) produced trends in the hypothesized directions, but the differences
were not significant. While these results do not contradict the model, they fail to provide the robust evidence needed to confirm
its more detailed predictions, suggesting that human learning may be more flexible or variable than that of the model used to
generate the theory.

Several limitations of this study must be acknowledged. A key limitation is the high rate of representational switching observed
in Experiment 2, where it was the dominant strategy in both the small (65.3%) and large (77.8%) violation groups. This general
preference for switching is consistent with the principle that humans find it easier to represent positive relations (e.g., "more
orange") than negative ones (e.g., "less blue")11. However, this strong baseline preference may have created a ceiling effect
that masked a larger underlying difference between the conditions. Additionally, the direct query in Experiment 2, while
avoiding the memory confound of Experiment 1, relies on the assumption that participants can accurately report their internal
strategy. Finally, the artificial nature of the stimuli and task may not fully capture how expectation violations are handled in
more complex, real-world scenarios.

Several avenues for future research emerge from our findings. Developing more sensitive measures and refined experimental
designs could strengthen empirical tests of the dual-pathway model. To counteract the potential bias towards representational
adaptation, future studies could aim to increase the cognitive cost of representational switching. For example, using more
complex, non-complementary features instead of simple colors would make it harder to find an alternative representation,
potentially creating a scenario where relational adaptation becomes the "easier" path, which might align results more closely
with the theory’s predictions for small violations. Methodologies like eye-tracking could provide real-time data on attentional
focus, potentially resolving the ambiguity between the subjective query of Experiment 2 and the memory-confounded task of
Experiment 1. Additionally, exploring individual differences in adaptation strategies could illuminate the sources of variability
observed in our study. Factors such as cognitive flexibility, working memory capacity, or personality traits related to openness
to experience might predict which adaptation pathway individuals prefer. Finally, extending the paradigm to more ecologically
valid contexts could test whether the framework applies beyond artificial laboratory tasks. Studies using social expectations,
causal relationships, or real-world learning scenarios would provide stronger tests of the model’s generalizability.

In conclusion, this research represents a preliminary step in testing the dual-pathway model. We found modest, statistically
significant evidence for the model’s core prediction that violation magnitude influences the adaptation pathway. However, the
small effect size and the null results for more nuanced predictions indicate that the direct translation of this computational model
to human behavior is not straightforward. The findings highlight that human adaptation is complex, variable, and subject to
cognitive factors like memory that are not always captured in simpler models. Despite these limitations, this work establishes a
foundation and highlights clear methodological directions for future research into how humans adapt their beliefs in a changing
world.

Methods

Participants

A total of 1027 individuals participated in the experiments and completed the entire study (including those participated in
the preliminary study of Experiment 2). The participants were recruited online via Prolific (www.prolific.com) and
received monetary compensation for their time. The sample had a mean age of 36.27 years (SD = 10.94, range: 18–60 years),
with approximately equal representation across sex (Male: 50.8%, Female: 49.2%). Participants were primarily from the
United Kingdom (71.2%) and the United States (28.8%), and English was the primary language for 91.5% of participants. All
participants provided informed consent before beginning the study, and the experimental protocol was approved by the Hebrew
University of Jerusalem Ethics Committee.
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Apparatus and stimuli

The experiment was built using PsychoPy12 and was presented to participants in their web browser.

The stimuli consisted of rectangles presented on a neutral gray background. Each rectangle was filled with a combination of
blue and orange. The key feature of each stimulus was the ratio of the two colors.

In Experiment 1, the sides of the color fillings were random, i.e., the blue side could have been on either the left or right. In
Experiments 2 and 3, the blue side was always on the left.

In the relational task, the rule strength corresponded to the difference in this ratio between pairs of rectangles. For example, in
the "small violation" condition, the difference in the blue-to-orange ratio between the two rectangles was 12%. Similarly, in the
"large violation" condition, the difference between the blue-to-orange ratio was 87%.

After each choice, participants received feedback in the form of "Correct :)" or "Wrong :(".

1 Experimental Procedures

1.1 Experiment 1

1.1.1 Overview

Participants initiated the experiment online through a procedure consisting of four main phases: an identification task, an initial
relation-learning task, a relation task with a reversed rule, and a final query.

1.1.2 Instructions

Participants received the following sequential instructions:

1. Welcome and Consent: “Welcome. In this experiment you are requested to identify rules that are associated with blue
and orange rectangles presented on the screen. You will need to select an answer based on the ratios of orange and blue
in the rectangles. After each choice, you will get feedback. Try to identify the rules based on these feedbacks. Please
follow the specific instructions of each part. If you consent, press SPACE to continue. Otherwise, press ESC anytime
throughout the experiment.”

2. Slider Task Instructions: “In this part, you will need to click on the slider with your mouse. Press SPACE to continue.”

3. Choice Task Instructions: “In this part, you will need to choose left or right using the arrows of your keyboard. Press
SPACE to continue.”

4. Final Task Instructions: “Now you are ready for the final task. It is the slider task with a single item. Press SPACE to
continue.”

1.1.3 Experimental Phases

Priming Phase (Identification Task) Participants were first presented with a series of rectangles combining blue and orange
colors. They were instructed to click on the slider based on a rule related to the rectangles. Participants received binary feedback
and used it to learn that the relevant feature was the fraction of one of the colors (e.g., blue) and to indicate this fraction with
the slider. For instance, if a quarter of the rectangle’s area was blue, the correct slider answer was 0.25± ε . This phase was
designed to prime participants to focus on the area of a specific color and ended when participants succeeded on 6 consecutive
trials.

Relational Learning and Rule-Reversal Phase Following the priming phase, participants were presented with pairs of
rectangles and had to select the “correct” one. Initially, the rule specified that the correct rectangle had a larger area of one
of the colors (e.g., blue). After the participant learned this rule, it was reversed without warning. The new rule specified that
the correct rectangle had a smaller ratio of the original color. Both the color used for priming (blue or orange) and the initial
relational rule were counterbalanced across participants.
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Final Evaluation (Repeated Identification Task) To determine the adaptation pathway, the final evaluation repeated the
identification task from the priming phase using a single item—a rectangle with a 75% blue ratio. Participants who clicked
above the 50% mark on the slider were classified as focusing on blue, while those who clicked below 50% were classified as
focusing on orange.

1.1.4 Parameters

Error tolerance for identification task (ε): ±0.15

Trials to success for priming phase: 6 consecutive correct trials

1.1.5 Time Limits

Welcome and consent screen: Maximum 60 seconds (auto-advance or SPACE press)

Evaluation task instructions: Maximum 30 seconds (auto-advance or SPACE press)

Individual evaluation trials: Maximum 8 seconds per trial (response or timeout)

Feedback after evaluation trials: Fixed 2 seconds

Choice task instructions: Maximum 30 seconds (auto-advance or SPACE press)

Individual choice trials: Maximum 5 seconds per trial (key press or timeout)

Feedback after choice trials: Fixed 2 seconds

Final test instructions: Maximum 30 seconds (auto-advance or SPACE press)

Final test trial: Maximum 30 seconds (response or timeout)

Feedback after final test: Fixed 2 seconds

Concluding screen: Fixed 1 second

1.2 Experiment 2

1.2.1 Overview

The procedure for Experiment 2 was similar to Experiment 1, with key modifications designed to simplify the analysis and
address a potential memory confound. To standardize the experimental pathway, priming was always conducted for the ratio of
blue, and the relational task always began with “higher ratio of blue” as the correct rule before inversion. This created a single,
consistent experimental pathway for all participants before the rule reversal.

1.2.2 Instructions

Participants received the following sequential instructions:

1. Welcome and Consent: “Welcome. In this experiment you are requested to identify rules associated with blue and
orange rectangles (like below). Use the provided feedback to identify the rules. Hint: the answers correspond to the
ratio of orange versus blue in the rectangles. If you consent, press SPACE to continue. Otherwise, press ESC anytime
throughout the experiment.”

2. Slider Task Instructions: “In this part, you will need to find a rule related to a single rectangle and click on the slider
accordingly. Press SPACE to continue.”

3. Choice Task Instructions: “In this part, you will need to choose left or right using the arrows of your keyboard. Press
SPACE to continue.”

4. Final Query: “What color were you focusing on in the last trial?”
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1.2.3 Final Evaluation (Direct Query)

After participants adapted to the reversed rule, their representational focus was directly assessed by asking: “What color were
you focusing on in the last trial?”

1.2.4 Parameters

Error tolerance for identification task (ε): ±0.15

Trials to success for priming phase: 7 consecutive correct trials

1.2.5 Time Limits

An initial, exploratory version of this experiment revealed a trend in the predicted direction. Participants experiencing large
violations (N = 175) showed a greater tendency to switch their representational focus than those experiencing small violations
(N = 167), though the difference did not reach statistical significance (t(340) = 1.5, p = 0.07). A post-hoc analysis of these
results indicated that the total time taken to complete the task was a significant source of variance; applying a time limit
retroactively increased the significance of the result (reducing the groups to N = 122 in the large violation groups and N = 96
in the small violation group). Based on this finding, we conducted a subsequent experiment with 156 new participants that
included an ad-hoc 200-second time limit for task completion. The results of this revised experiment are presented in Figure 3b.

Overall timeout: 200 seconds for revised version (no limit for initial version)1

Welcome and consent screen: Maximum 60 seconds (earlier with SPACE press)

Evaluation task instructions: Maximum 30 seconds (earlier with SPACE press)

Individual evaluation trials: Maximum 8 seconds per trial (response or timeout)

Feedback after evaluation trials: Fixed 2 seconds

Choice task instructions: Maximum 20 seconds (earlier with SPACE press)

Individual choice trials: Maximum 5 seconds per trial (arrow key response or timeout)

Feedback after choice trials: Fixed 2 seconds

Final question screen: Maximum 30 seconds (slider response)

Concluding screen: Fixed 1 second

1.3 Experiment 3

1.3.1 Overview

The procedure for Experiment 3 was identical to Experiment 2, with two main modifications: an additional intermediate step in
the rule-reversal phase and an extended overall time limit of 250 seconds. The intermediate step was introduced to test more
nuanced theoretical predictions across four experimental conditions:

Contrast reducing: Rule sequence 87% → 12% →−87%

Undershooting: Rule sequence 87% →−12% →−87%

Contrast enhancing: Rule sequence 12% → 87% →−12%

Overshooting: Rule sequence 12% →−87% →−12%

1Participants who did not complete the test within the time limit were excluded from analysis.
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1.3.2 Time Limits

Global timeout: 250 seconds (automatic termination)

Welcome and consent screen: Maximum 60 seconds (SPACE press or timeout)

Evaluation task instructions: Maximum 30 seconds

Individual evaluation trials: Maximum 8 seconds per trial (slider response or timeout)

Feedback after evaluation trials: Fixed 2 seconds

Choice task instructions: Maximum 20 seconds

Individual choice trials: Maximum 5 seconds per trial (arrow key response or timeout)

Feedback after choice trials: Fixed 2 seconds

Final question screen: Maximum 30 seconds (slider response)

Concluding screen: Fixed 1 second

Data analysis

The primary dependent variable was the participant’s final color focus, as determined by their response in the final evaluation
phase (repeated identification task in Experiment 1, direct query in Experiments 2 and 3). A one-tailed independent samples
t-test was used to compare the fraction of participants who switched their color focus between the small and large violation
groups.
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Discussion and Conclusion

This thesis explored real-time adaptation as a computational framework for

modeling fluid intelligence. The work demonstrates the potential of this

paradigm across three studies: solving intelligence test-like abstract rea-

soning problems, providing a mechanistic account of paradoxical findings

in human belief updating, and testing a novel prediction of the model in a

behavioral experiment. While the empirical validation remains preliminary,

these studies collectively highlight both the promise and the limitations of

viewing fluid intelligence through the lens of real-time adaptation.

Abstract Reasoning as Real-Time Optimization

A key finding of this work is that artificial neural networks can perform

abstract reasoning without relying on extensive pre-training. This find-

ing challenges the dominant view that modern AI must rely on large-scale

training for succeeding in reasoning tasks. Instead, I propose that abstract

reasoning may be understood as a process of real-time optimization, where

parameters adapt dynamically based on the information presented by the

problem. This perspective offers an alternative to the prevailing trend of

ever-larger models and datasets in AI, suggesting a path toward more ef-

ficient and adaptable systems that emphasize inference-time learning over

exhaustive prior training.

The model architecture also draws parallels to human cognition. The use

of fixed, random convolutional layers as general-purpose feature extrac-

tors, combined with adaptive higher layers, echoes the division between

early sensory cortices and higher-order association regions, such as the

prefrontal cortex, which support flexible reasoning [25–27]. While this
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analogy should be treated with caution, it suggests that structural biases in

networks, like biological priors in the brain, may scaffold adaptive reason-

ing.

A Mechanistic Account of Expectation Violation

Building on this foundation, the second study applied the model in an

online learning framework to model belief updating. Specifically, it pro-

vided a process-level account of the inverted U-shaped adaptation pattern

observed in humans, where moderate expectation violations drive belief

change more effectively than extreme ones [20–22].

Within my framework, this effect arises naturally from competition be-

tween adaptation pathways. When contradictions occur, the system can

either adjust its relational rule (e.g., “the rule has reversed”) or reinterpret

the stimulus (e.g., “I was attending to the wrong feature”). My analysis

revealed that the choice between these pathways is determined by a ”race”

where the relative speeds are governed by the magnitudes of the original

and new rules. This view aligns with computational perspectives in which

apparent “non-updating” can reflect inference over structure (e.g., latent

causes) rather than a failure of learning. Gershman and colleagues, for

example, argue that memory modification depends on structured inference

that determines when new information should update an existing memory

versus be stored separately [24]. This explanation contrasts with psycho-

logical theories that invoke specialized “immunization” or bias mechanisms

[28, 29]. Instead, resistance to updating emerges as a by-product of opti-

mization dynamics.
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From Theory to Empirical Test: Challenges and

Insights

The third component of this work sought to empirically test the dual-

pathway model in humans. I developed a novel psychophysical paradigm,

translating relational rules into perceptual comparisons of “more” or “less.”

By parametrically varying the violation magnitude, I assessed how the

strength of contradiction influenced adaptation behavior. The results—a

modest but significant effect of violation magnitude on representational

switching—provide initial support for the dual-pathway model.

The experimental process also revealed important limitations. An initial

experiment design was confounded by carryover of prior task strategies,

highlighting differences between isolated network models and human cog-

nition. The second, more successful design, was more controlled but it

introduced assumptions about metacognitive reporting and was subject to

considerable variability across participants. Moreover, a general bias to-

ward representational switching suggested the influence of additional fac-

tors, such as preferences for positive relations [30]. These findings empha-

size that while the model might capture a core mechanism, its interaction

with broader cognitive systems must be taken into account.

Strengths, Limitations, and Future Directions

A central contribution of this thesis is demonstrating that artificial neu-

ral networks can perform abstract reasoning through real-time parameter

adaptation, without extensive pre-training. This challenges prevailing as-

sumptions about the necessity of large-scale training for reasoning tasks.

The work provides a specific computational mechanism – test-time adapta-

tion – that can be implemented, tested, and compared with human behav-

ior, moving beyond purely descriptive accounts of fluid intelligence.

The iterative progression across studies represents a methodical approach
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to theory development: establishing the computational possibility in ab-

stract reasoning tasks, extending the framework to explain a specific para-

dox in human belief updating, and designing behavioral experiments to test

model predictions. While the empirical support remains limited, this pro-

gression demonstrates how computational frameworks can generate testable

hypotheses about cognitive mechanisms.

The work also illustrates how tools from deep learning can be repurposed

to model cognitive phenomena, potentially opening new avenues for un-

derstanding adaptive reasoning. However, the biological plausibility and

broader applicability of these mechanisms require substantial further in-

vestigation.

Nonetheless, important limitations constrain the scope of these contribu-

tions. First, the framework isolates a single mechanism in abstraction from

the broader architecture of human cognition. Future models should inte-

grate test-time adaptation with systems for working memory, hierarchical

planning, and goal-setting to approximate human reasoning more faith-

fully. Second, the empirical validation presented here is preliminary. The

observed effect sizes were small, and several predictions were not con-

firmed. More sensitive behavioral measures (e.g., eye-tracking), task de-

signs that prevent ceiling effects, and studies incorporating reasoning in

more natural domains will be necessary to test the framework’s generaliz-

ability.

Third, the biological plausibility of test-time adaptation remains limited.

The implementation used here abstracts away from neural learning rules,

resource constraints, and interactions across brain systems. While the com-

putational approach provides useful insights, bridging to neuroscience will

require addressing how such adaptive mechanisms could be implemented

in biological networks. Finally, the tasks explored were deliberately simpli-

fied; it remains an open question whether inference-time optimization can

scale to the richness and diversity of real-world reasoning.

The implications of this work speak directly to the dominant paradigm in

modern artificial intelligence: large-scale, pre-trained foundation models.
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These models, while powerful, are often static and brittle. Their perfor-

mance can degrade unpredictably when they encounter data that differs

from their vast training sets—a critical vulnerability for systems deployed

in the real world, from an autonomous vehicle facing an unforeseen road

obstacle to a medical diagnostic tool analyzing a rare disease presentation.

Embedding the principles of test-time adaptation, as explored here, offers a

potential solution, promising to make AI systems more robust and context-

aware. However, this introduces a profound and practical challenge: do

we truly want our most critical systems to learn and change on the fly? For

instance, an autonomous vehicle that continuously adapts its driving model

could accumulate unsafe behaviors from idiosyncratic local driving habits,

leading to unpredictable and potentially dangerous outcomes. The real

engineering problem is not simply enabling adaptation but controlling it.

Unconstrained adaptation risks catastrophic forgetting, where new learn-

ing overwrites essential pre-trained knowledge, or model destabilization,

turning a reliable system into an unreliable one.

Therefore, the challenge for future research is to develop frameworks that

strike a balance between adaptability and stability—systems that know

when and how to update their internal models in a safe, verifiable man-

ner. If such controlled adaptation could achieve competitive performance,

it might steer the trajectory of AI development away from a sole reliance

on ever-larger models and toward more dynamic, efficient, and ultimately

more intelligent systems. While the work presented here is preliminary,

it underscores that moving beyond static AI is a crucial next step, though

demonstrating this potential safely and effectively will require substantial

advances.

Conclusion

In sum, this thesis has argued that fluid intelligence can be understood

as an active process of real-time adaptation. The studies presented here
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provide initial evidence that adapting artificial neural networks in real-

time offers a useful computational framework for understanding abstract

reasoning and belief updating. While the empirical findings are prelimi-

nary, they demonstrate the value of process-level models that can generate

testable predictions and connect mechanistic principles with human be-

havior. Taken together, this work suggests that adaptation in real-time is a

central principle of intelligence – one that may ultimately help bridge the

gap between artificial and human minds.
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לפיה הרווחת התפיסה את מאתגר ובכך שינון על הסתמכות ללא להצליח

לפיו הרעיון את ומבסס מהזיכרון, שנאגר נרחב ידע דורשות כאלו יכולות

נוזלית. אינטליגנציה בהצלחה למדל מסוגלת אמת בזמן אדפטציה

כוחה את לבחון כדי קלטים של זרם על זו מסגרת מיישם השני המחקר

ציפיות של קיצוניות הפרות אנושית: בלמידה פרדוקסלי ממצא מול ההסברי

לתחרות זו תופעה מייחס אני הציפיות. של עדכון לקדם, ולא לעכב, יכולות

הפרמטרים בין מבנית מפרידה אשר המודל, של בארכיטקטורה הטבועה

אינה תצפית כאשר ציפיות. המקודדים אלה לבין חושיים קלטים המקודדים

את לשנות בחירה: מציבה זו ארכיטקטורה הציפייה, עם אחד בקנה עולה

שדינמיקת מראות התוצאות הקלטים. ייצוג את לשנות או עצמה הציפייה

זו: בבחירה טבעי באופן מכריעה המודל של אמת בזמן האופטימיזציה

הפרות בעוד הציפייה, של בפרמטרים עדכונים מניעות מתונות הפרות

את משמרות ובכך הקלטים, ייצוג של בפרמטרים שינוי מעדיפות קיצוניות

הראשונית. הציפייה

אמפירית בחינה ידי על שלי החישובית המסגרת את מבסס האחרון המחקר

הטיה מראים אנשים האם בדקתי אדם. בבני שלה המרכזי הניבוי של

בהתבסס יחסיות. ציפיות של להפרה מסתגלים הם שבו באופן שיטתית

האדפטיבית, התגובה את תעצב ההפרה שעוצמת שיערתי שלי, המודל על

פירוש או היחסית הציפייה עדכון אסטרטגיות: משתי לאחת משתתפים תטה

ההתנהגות פסיכופיזי. ניסוי עיצבתי זאת, לבחון כדי הקלט. של מחדש

האפקט המודל: של הדינמיקה עם איכותני באופן עקבית הייתה האנושית

הסבירות את מובהק באופן הגבירו יותר גדולות הפרות אך צנוע, היה

אלה ממצאים המודל. שניבא כפי הקלט, את מחדש יפרשו שמשתתפים

בעת ובה שלי, למודל חשובה אך ראשונית אמפירית תמיכה מספקים

האנושית. לקוגניציה חישוביים מנגנונים של במיפוי האתגרים את מדגישים

להסקה מפתח עיקרון היא אמת בזמן שאדפטציה מציעה זו תזה לסיכום,

מדע עבור מרכזיות: השלכות שתי לכך יש ציפיות. של ולדינמיקה מופשטת

בינה ועבור נוזלית, לאינטליגנציה מכניסטי מודל מציעה היא הקוגניציה,

הוספת ידי על המודלים שבריריות על בהתגברות תומכת היא מלאכותית,

התוצאות יחד, מראש. שאומנו במודלים אמת בזמן לאדפטציה היכולת

טבעית אינטליגנציה, של מרכזי היבט היא אמת בזמן שאדפטציה מציעות

כאחד. ומלאכותית
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תקציר

על הסתמכות ללא חדשות בעיות לפתור היכולת – נוזלית אינטליגנציה

המנגנונים אך האנושית, הקוגניציה של מובהקת תכונה היא – קודם ידע

מערכות העניין לצורך בחינה במלואם. מובנים אינם עדיין בבסיסה העומדים

שמערכות שאף מגלה אינטליגנציה של כמודלים מודרניות מלאכותית בינה

כאילו להיראות ועשויות משימות, במגוון מרשימים ביצועים מפגינות אלו

באינטליגנציה מחזיקות הן אם ברור לא עדיין נוזלית, באינטליגנציה מחזיקות

אמיתית. נוזלית

מלאכותית: בינה מערכות של עיקריות מגבלות משתי נובעת זו ספקנות

רוכשים אנושיים ילדים עצומים: נתונים במאגרי תלויות הן ראשית,

הן שלהן: השבריריות שנית, דוגמאות. פחות הרבה עם דומות יכולות

עליו מהפורמט במעט שונים קלטים מופיעים כאשר קרובות לעיתים נכשלות

כמתאימי־ בעיקר פועלים אלו שמודלים מרמזים אלו חסרונות התאמנו.

הגמישות את ופחות גבישית אינטליגנציה יותר המזכירים מתוחכמים, תבניות

אנושית. נוזלית אינטליגנציה של

של מיכולתה לנבוע עשויה נוזלית שאינטליגנציה הרעיון את בוחנת זו תזה

אדפטציה בעיות, פתרון כדי תוך שלה הפנימי המבנה את להתאים מערכת

הפרמטרים שבה חישובית מסגרת באמצעות זה רעיון מפרמל אני אמת. בזמן

הן בוחן אני אמת. בזמן אופטימיזציה עוברים מלאכותית נוירונים רשת של

)הסתגלות בודדת בעיה עבור היא האופטימיזציה שבו הקיצוני, המקרה את

המודל את שמציב מה בעיות, של זרם ישנו בו המקרה את והן היסק(, בזמן

אונליין. למידת בפרדיגמת

נוירונים, רשת כי מדגים הראשון מחקרים. שלושה פני על נפרשת זו תזה

יכולה קודם, אימון כל חסרה ולכן אקראיים פרמטרים עם המאותחלת

קיצוני במקרה אנושיים. אינטליגנציה למבחני הדומות הסקה משימות לפתור

שבתוך במידע רק שימוש תוך שלה הפרמטרים את מתאימה הרשת זה,

מסוימים במקרים יכולה מופשטת הסקה כי מראה זה מחקר בודדת. בעיה

i



בהדרכתו נעשתה זו עבודה

לוינשטיין יונתן פרופסור של



בירושלים העברית האוניברסיטה

המוח למדעי ספרא ולילי אדמונד מרכז

באמצעות נוזלית אינטליגנציה מידול

אמת בזמן אדפטציה

ברק תומר ידי על מוגש
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